Week 4 QCB 408/508 Spring 2020 · Likelihood a maximum likelihood estimation (MLE) · EFDs (exponential family distributions)

· Frequentist inference from pirotel statistics

rvis K., X., ..., Xn Lie Fo O parameter should be informative about what we want to know about the population (X1, X2, ..., Xn) ~ Fo joint distribution Two levels in a study: O Observed data X1, X2, ..., Xn that

midel obtained data

Likelihood
$$L(\theta; \mathbf{x}) = f(\mathbf{x}; \theta)$$

 $l \text{ observed data}$
 $log-likelihood $\mathcal{L}(\theta; \mathbf{x}) = log L(\theta; \mathbf{x})$
 $\exists n \rho \rho \text{ ose } X_1, X_2, ..., X_n \text{ did } f_{\theta}$
Then $\mathcal{L}(\theta; \mathbf{x}) = log (\mathcal{L}(\theta; \mathbf{x}))$
 $= log (\mathcal{L}(\theta; \mathbf{x}))$$

Sufficient statistic
A statistic
$$T(x)$$
 is any bunchim of the data
 $T(x)$ is sufficient if $X | T(x)$
does not depend on Θ .
If $f(x; \theta) = g(T(x); \theta) h(x)$ then
 $T(x)$ is sufficient.
 $L(\theta; x) = g(T(x); \theta) h(x) \propto L(\theta; T(x))$
 $\int_{Poportional in \Theta}$

Exercise

$$X_{i}, X_{i}, ..., X_{n} \stackrel{\text{lie}}{\sim} N(\mu, 62)$$
. Show
 \overline{X}_{n} is sufficient for μ .
Hurt: $\frac{1}{\sum_{i=1}^{n} (\pi i - \mu)^{2}} = \frac{1}{\sum_{i=1}^{n} (\pi i - \pi)^{2}} + n(\overline{x} - \mu)^{2}$.
 $f(\underline{x}; \mu, b^{*}) = \frac{1}{(2\pi b^{*})^{n} \mu} \exp \left\{ -\frac{\xi(\pi i - \mu)^{2}}{2b^{2}} \right\}$

Other topics:
• Munimal sufficient statistics
• Complete sufficient statistics
• Ancillary statistics
• Basin's theorem
Maximum Likelihood Estimation
The MLE is the value of 0 that
maximizes the likelihood.

$$\hat{B}_{MLE} = \arg\max L(0; X)$$

 $= \arg\max L(0; X)$
 $= \arg\max L(0; X)$
 θ
Evanple: $X \sim Bmonicl(n, p)$
 $U(p; X) = \binom{n}{X} p^{X}(1-p)^{n-X}$
 $Q(p; X) \propto X/og(p) + (n-x)/ig(1-p)$

$$\frac{d}{d\rho} l(\rho; \chi) = 0, \quad \text{sslve for } \rho$$

$$\implies \hat{\rho}_{\text{mue}} = \frac{\chi}{n}$$

$$\frac{\hat{\rho} - \rho}{\sqrt{\rho(1 - \hat{\rho})}} \sim Normal(0, 1) \quad \text{for } \log n$$

$$\sqrt{\frac{\hat{\rho}(1 - \hat{\rho})}{n}}$$
Suppose may real life data says $\hat{\rho} = 0.32$

$$\sum_{n=1}^{\infty} Normal(\hat{\sigma}) = \rho(1 - \rho)$$

$$E[\hat{\rho}] = \rho, \quad V_{cr}(\hat{\rho}) = \frac{\rho(1-\rho)}{n}$$
$$\hat{\rho} = \frac{\chi}{n}$$

The observed
$$\hat{p} = 0.32$$
 (x = 32, n = 100)
But I want the "sampling distribution"
of \hat{p} : the dist's of $\hat{p} = \frac{X}{n}$ when I
repeat the study (probability arm) over
and over.

P is unknown, so the distince
$$\hat{p}$$
 involves
 $p \cdot But = pivotal statistic does not
involve p , such as:
 $\frac{\hat{p} - p}{\sqrt{p(1-\hat{p})}} \sim Normal(0,1)$$

() MLE is "consistent":

$$\hat{\Theta}_{n} \xrightarrow{P} \hat{\Theta}$$

 $\hat{\Theta}$ Equivariance : If $\hat{\Theta}_{n}$ is the MLE of $\hat{G}(\hat{\Theta})$.
Here $\hat{G}(\hat{\Theta}_{n})$ is the MLE of $\hat{G}(\hat{\Theta})$.
Example: \hat{X}_{n} Binomial (n, p) .
 $\hat{p} = \hat{X}/n = n\hat{p}(1-\hat{p})$ is $MLE = \hat{f}$
 $V_{nT}(\hat{X}) = n\hat{p}(1-\hat{p})$.
 \hat{J} Fisher Information is
 $I_{n}(\hat{\Theta}) = Var\left(\frac{d}{d\Theta}\hat{I}(\hat{\Theta}; \hat{X})\right)$
 $= Var\left(\frac{d}{d\Theta}\hat{I}(\hat{\Theta}; \hat{X})\right)$
 $= \sum Var\left(\frac{d}{d\Theta}\hat{I}(\hat{\Theta}; \hat{X})\right)$
 $= \sum Var\left(\frac{d}{d\Theta}\hat{I}(\hat{\Theta}; \hat{X})\right)$
 $= \sum Var\left(\frac{d}{d\Theta}\hat{I}(\hat{\Theta}; \hat{X})\right)$
 $= -E\left[\frac{d^{2}}{d\Theta^{2}}\hat{I}(\hat{\Theta}; \hat{X})\right]$
 $= -\hat{\Sigma} E\left[\frac{d^{2}}{d\Theta^{2}}\hat{I}(\hat{\Theta}; \hat{X})\right]$

In general, the "standard error" of an
estimator is the standard deviation of
the spin pling dist'n of the estimator.
For MLES, the standard error of
$$\hat{\Theta}_n$$
 is
 $Vor(\hat{\Theta}_n) \equiv se(\hat{\Theta}_n)$.
 $se(\hat{\Theta}_n) \approx \frac{1}{\sqrt{I_n(\hat{\Theta})}}$ true $\hat{\Theta}$
Also, $\hat{s}e(\hat{\Theta}_n) = \frac{1}{\sqrt{I_n(\hat{\Theta}_n)}}$
is defined as the usual standard error
estimator of an MLE.
 $CLT for MLE$:

$$\frac{\hat{\theta}_n - \theta}{3e(\hat{\theta}_n)} \xrightarrow{D} Normal(0,1)$$

$$\frac{\hat{\theta}_n - \theta}{\hat{se}(\hat{\theta}_n)} \xrightarrow{D} Normal(0,1)$$

Example:
$$X \sim Binomize [n, p]$$

 $J_n(p) = \frac{n}{p(1-p)}$

Asymptotic Pivotal Statistic
Under above assumptions,

$$\overline{Z} = \frac{\widehat{\Theta}_n - \Theta}{\widehat{se}(\widehat{\Theta}_n)} \xrightarrow{D} Nomel(0, 1)$$

 $\overline{se}(\widehat{\Theta}_n) \xrightarrow{cs} n - \infty$
is approximate pivotal statistic.

Optimility The MLE is such that $\overline{m(\hat{\theta}_n - \theta)} \xrightarrow{D} Normal(0, C^{-1})$ Suppose $\widetilde{\Theta}_n$ is any other estimator where $\overline{m}(\widetilde{\Theta}_n - \theta) \xrightarrow{D} Normal(0, 6^{-1})$

It follows that
$$\frac{1}{6^2} \leq 1$$
.

$$\frac{\text{Delta} \text{ Method}}{\text{If } g(.) \text{ is a differentiable function and}} \\ g'(0) \neq 0 \quad \text{We have} \\ g(t) \approx g(0) + g'(0) (t-0) \\ \text{Suppose I have } \hat{se}(\hat{\theta}n), \text{ then} \\ \hat{se}(g(\hat{\theta}n)) = |g'(\hat{\theta}n)| \hat{se}(\hat{\theta}n) \\ \hat{se}(\hat{\theta}n) = |g'(\hat{\theta}n)| \hat{se}(\hat{\theta}n) \\ \hat{se}(\hat{\rho}) = \underbrace{\hat{p}(1-\hat{\rho})}_{n} \quad g(\rho) = p(1-p) \\ \hat{se}(\hat{\rho}) = \hat{g}(1-\hat{\rho}) \quad g'(\rho) = 1-2\rho \\ \hat{se}(\hat{\rho}(1-\hat{\rho})) = |1-2\hat{\rho}| \underbrace{\hat{p}(1-\hat{\rho})}_{n} \\ \end{array}$$

Distribution	MLE	Std Err	Z Statistic
Binomial(n,p)	$\hat{p}=X/n$	$\sqrt{rac{\hat{p}(1-\hat{p})}{n}}$	$rac{\hat{p}\!-\!p}{\sqrt{rac{\hat{p}(1-\hat{p})}{n}}}$
$Normal(\mu,\sigma^2)$	$\hat{\mu} = \overline{X}$	$\frac{\hat{\sigma}}{\sqrt{n}}$	$rac{\hat{\mu}-\mu}{\hat{\sigma}/\sqrt{n}}$
$Poisson(\lambda)$	$\hat{\lambda} = \overline{X}$	$\sqrt{rac{\hat{\lambda}}{n}}$	$rac{\hat{\lambda} - \lambda}{\sqrt{\hat{\lambda}/n}}$

Exponential Family Distributions (EFD)

Simple case: Natural single Parameter EFD

$$f(x; \eta) = h(x) \exp \left\{ \eta x - A(\eta) \right\}$$
Example: Bernoulli(p)

$$f(x; p) = p^{x} (1-p)^{1-x}$$

$$= \exp \left\{ x \log(p) + (1-x) \log(1-p) \right\}$$

$$= \exp \left\{ \log \left(\frac{p}{1-p}\right) x + \log(1-p) \right\}$$

$$\eta(p) = \log \left(\frac{p}{1-p}\right)$$

$$A(\eta) = \log (1+e^{\eta})$$

$$= e \times p \left\{ h \times - A(h) \right\}$$

A General Definition:
If X follows on EFD parameterized on the
observed scale by
$$\underline{\theta}$$
 then it has
pdf or part of the form:
 $f(x;\underline{\theta}) = h(x) \exp\left\{\frac{d}{k} \eta_{k}(\underline{\theta}) T_{k}(x) - A(\underline{\eta})\right\}$
 $f(x) \eta_{k}(\underline{\theta}) = h(x) \exp\left\{\frac{d}{k} \eta_{k}(\underline{\theta}) T_{k}(x)\right\} dx$

$$E_{XAMPLe}: Normal (m, 62)$$

$$f(x_{1}M, 62) = \frac{1}{\sqrt{2\pi}6^{2}} e_{XP} \left\{ -\frac{(x-m)^{2}}{26^{2}} \right\}$$

$$= \frac{1}{\sqrt{2\pi}} e_{X} \left\{ \frac{M}{6^{2}} x - \frac{1}{26^{2}} x^{2} - \log(6) - \frac{M^{2}}{26^{2}} \right\}$$

$$I(r, 6^{2}) = \left\{ \frac{M}{6^{2}} \right\}^{n} \left\{ \frac{1}{\sqrt{2\pi}6^{2}} + \frac{1}{26^{2}} \right\}$$

$$I(r, 6^{2}) = \left\{ \frac{M}{6^{2}} \right\}^{n} \left\{ \frac{1}{\sqrt{2\pi}6^{2}} + \frac{1}{26^{2}} + \frac{1}{26^{2}} \right\}$$

$$A(A) = \log(6) + \frac{M^{2}}{26^{2}} = -\frac{1}{2}\log(-2\eta_{2}) - \frac{M^{2}}{4\eta_{2}}$$

Calculating Moments;

$$\frac{\partial}{\partial P_{k}} A(y) = E \left[T_{k}(x) \right]$$

 $\frac{\partial^{2}}{\partial P_{k}} A(y) = Vas \left(T_{k}(x) \right)$
 $\frac{\partial^{2}}{\partial P_{k}}$

Maximum Likelihood :

$$X_{1}, X_{2}, ..., X_{n}$$
 are is from an EFD
 $l(x_{1}, x_{2}) = \sum_{i=1}^{n} \left[l(\alpha)h(x_{i}) \right] + \stackrel{d}{\cong} M_{u}(\underline{a})T_{u}(x_{i}) - A(\underline{a}) \right]$
 $\frac{\partial}{\partial \eta_{u}} l(\underline{a}_{1}, \underline{x}) = \sum_{i=1}^{n} T_{u}(x_{i}) - n \stackrel{d}{\Rightarrow} A(\underline{a}) \Big]$
 S_{0} MLE of η_{u} is the solution to:
 $\frac{1}{n} = \sum_{i=1}^{n} T_{u}(x_{i}) = \frac{\partial}{\partial \eta_{u}} A(\underline{a}) = E[T_{u}(X)]$

Point estimation: Example MLE
$$\hat{\Theta}_n$$

Contribute Intends (of MLES):
CI has the form:
 $(\hat{\Theta} - C_{\ell}, \hat{\Theta} + C_n)$ $C_{\ell}, C_n > 0$
where
 $P_{\ell}(\hat{\Theta} - C_{\ell} \in \Theta \leq \hat{\Theta} + C_n; \hat{\Theta})$
forms the "level" or coverage probability
Note: $\hat{\Theta}$ is the $\ell \vee$ and C_{ℓ}, C_n
are too usually
Approximate 95% CI for MLES
 $0.95 \approx P_{\ell}(-1.96 \leq \frac{\hat{\Theta} - \hat{\Theta}}{Se(\hat{\Theta})} \leq 1.96)$
 $= P_{\ell}(-1.96 \cdot \hat{Se}(\hat{\Theta}) \leq \hat{\Theta} - \Theta \leq 1.96 \cdot \hat{Se}(\hat{\Theta})$
 $= P_{\ell}(-1.96 \cdot \hat{Se}(\hat{\Theta}) \leq \hat{\Theta} = \Theta + 1.96 \cdot \hat{Se}(\hat{\Theta})$

•

$$= P_{1}(-1.96 \text{ sel}(\hat{\theta}) \leq 0 - \hat{\theta} \leq 1.96 \text{ sel}(\hat{\theta}))$$

$$= P_{1}(\hat{\theta} - 1.96 \text{ sel}(\hat{\theta}) = \theta \leq \hat{\theta} + 1.96 \text{ sel}(\hat{\theta}))$$

$$\Rightarrow 95\% \text{ approx} \cdot (\hat{\Gamma} + 5)$$

$$(\hat{\theta} - 1.96 \text{ sel}(\hat{\theta}), \hat{\theta} + (.96 \text{ sel}(\hat{\theta}))$$
See reading for one - sided
$$(\hat{\theta} - C_{\theta}, \infty)$$

$$(-\infty, \hat{\theta} + C_{\mu})$$

$$(1 - \alpha) \cdot 100\% \text{ approx} CI:$$

$$\frac{d_{1}}{d_{2}}$$

$$N(0,1)$$

$$\begin{aligned} \overline{z}_{4} & \overline{z}_{5} & \text{the } \measuredangle - \text{perentile} \\ \text{ob } & \text{Normal } [0,11) \\ (1-\alpha) \cdot 100\% & \text{approx } CI \\ (\widehat{b} - [\overline{z}_{4/2}] \, \widehat{se}(\widehat{b}) , \, \widehat{b} + |\overline{z}_{4/2}| \, \widehat{se}(\widehat{b})) \\ & \\ (\widehat{b} - [\overline{z}_{4/2}] \, \widehat{se}(\widehat{b}) , \, \widehat{b} + |\overline{z}_{4/2}| \, \widehat{se}(\widehat{b})) \\ & \\ \overline{z}_{4/2} | \, \left[\widehat{p} / 1 - \widehat{p} \right] & \leq |\overline{z}_{4/2}| \, \left[\underbrace{0.5^{2}}{n} \right] \\ & \\ \end{aligned}$$