
Bootstrap Hypothesis Testing
As we have seen, hypothesis testing and confidence intervals are very related. For a simple null hypothesis, a
bootstrap hypothesis test p-value can be calculated by finding the minimum α for which the (1− α) CI does
not contain the null hypothesis value. You showed this on your homework.

The general approach is to calculate a test statistic based on the observed data. Then the null distribution of
this statistic is approximated by forming bootstrap test statistics under the scenario that the null hypothesis
is true. This can often be accomplished because the θ̂ estimated from the observed data is the population
parameter from the bootstrap distribution.

Example: t-test
Suppose X1, X2, . . . , Xm

iid∼ FX and Y1, Y2, . . . , Yn
iid∼ FY . We wish to test H0 : µ(FX) = µ(FY ) vs

H1 : µ(FX) 6= µ(FY ). Suppose that we know σ2(FX) = σ2(FY ) (if not, it is straightforward to adjust the
proecure below).

Our test statistic is

t = x− y√( 1
m + 1

n

)
s2

where s2 is the pooled sample variance.

Note that the bootstrap distributions are such that µ(F̂X∗) = x and µ(F̂Y ∗) = y. Thus we want to center the
bootstrap t-statistics about these known means.

Specifically, for a bootstrap data set x∗ = (x∗1, x∗2, . . . , x∗m)T and y∗ = (y∗1 , y∗2 , . . . , y∗n)T , we form null t-statistic

t∗ = x∗ − y∗ − (x− y)√( 1
m + 1

n

)
s2∗

where again s2∗ is the pooled sample variance.

In order to obtain a p-value, we calculate t∗(b) for b = 1, 2, . . . , B bootstrap data sets.

The p-value of t is then the proportion of bootstrap statistics as or more extreme than the observed statistic:

p-value(t) = 1
B

B∑
b=1

1
(
|t∗(b)| ≥ |t|

)
.

Parametric Bootstrap

Suppose X1, X2, . . . , Xn
iid∼ Fθ for some parametric Fθ. We form estimate θ̂, but we don’t have a known

sampling distribution we can use to do inference with θ̂.

The parametric bootstrap generates bootstrap data sets from Fθ̂ rather than from the edf. It proceeds as we
outlined above for these bootstrap data sets.



Permutation Methods
Permutation methods are useful for testing hypotheses about equality of distributions.

Observations can be permuted among populations to simulate the case where the distributions are equivalent.

Many permutation methods only depend on the ranks of the data, so they are a class of robust methods for
performing hypothesis tests. However, the types of hypotheses that can be tested are limited.

Permutation Test
Suppose X1, X2, . . . , Xm

iid∼ FX and Y1, Y2, . . . , Yn
iid∼ FY .

We wish to test H0 : FX = FY vs H1 : FX 6= FY .

Consider a general test statistic S = S(X1, X2, . . . , Xm, Y1, Y2, . . . , Yn) so that the larger S is the more
evidence there is against the null hypothesis.

Under the null hypothesis, any reordering of these values, where m are randomly assigned to the “X”
population and n are assigned to the “Y ” population, should be equivalently distributed.

For B permutations (possibly all unique permutations), we calculate

S∗(b) = S
(
Z
∗(b)
1 , Z

∗(b)
2 , . . . , Z∗(b)m , Z

∗(b)
m+1, . . . , Z

∗(b)
m+n

)
where Z∗(b)1 , Z

∗(b)
2 , . . . , Z

∗(b)
m , Z

∗(b)
m+1, . . . , Z

∗(b)
m+n is a random permutation of the valuesX1, X2, . . . , Xm, Y1, Y2, . . . , Yn.

Example permutation in R:
> z <- c(x, y)
> zstar <- sample(z, replace=FALSE)

The p-value is calculated as proportion of permutations where the resulting permutation statistic exceeds the
observed statistics:

p-value(s) = 1
B

B∑
b=1

1
(
S∗(b) ≥ S

)
.

This can be (1) an exact calculation where all permutations are considered, (2) a Monte Carlo approximation
where B random permutations are considered, or (3) a large min(m,n) calculation where an asymptotic
probabilistic approximation is used.

Wilcoxon Rank Sum Test
Also called the Mann-Whitney-Wilcoxon test.

Consider the ranks of the data as a whole, X1, X2, . . . , Xm, Y1, Y2, . . . , Yn, where r(Xi) is the rank of Xi and
r(Yj) is the rank of Yj . Note that r(·) ∈ {1, 2, . . . ,m + n}. The smallest value is such that r(Xi) = 1 or
r(Yj) = 1, the next smallest value maps to 2, etc.

Note that

m∑
i=1

r(Xi) +
n∑
j=1

r(Yj) = (m+ n)(m+ n+ 1)
2 .

The statistic W is calculated by:



RX =
m∑
i=1

r(Xi) RY =
n∑
j=1

r(Yj)

WX = RX −
m(m+ 1)

2 WY = RY −
n(n+ 1)

2
W = min(WX ,WY )

In this case, the smaller W is, the more significant it is. Note that mn−W = max(WX ,WY ), so we just as
well could utilize large max(WX ,WY ) as a test statistic.

Wilcoxon Signed Rank-Sum Test
The Wilcoxon signed rank test is similar to the Wilcoxon two-sample test, except here we have paired
observations (X1, Y1), (X2, Y2), . . . , (Xn, Yn).

An example is an individual’s clinical measurement before (X) and after (Y ) treatment.

In order to test the hypothesis, we calculate r(Xi, Yi) = |Yi −Xi| and also s(Xi, Yi) = sign(Yi −Xi).

The test statistic is |W | where

W =
n∑
i=1

r(Xi, Yi)s(Xi, Yi).

Both of these tests can be carried out using the wilcox.test() function in R.

wilcox.test(x, y = NULL,
alternative = c("two.sided", "less", "greater"),
mu = 0, paired = FALSE, exact = NULL, correct = TRUE,
conf.int = FALSE, conf.level = 0.95, ...)



Examples
Same population mean and variance.
> x <- rnorm(100, mean=1)
> y <- rexp(100, rate=1)
> wilcox.test(x, y)

Wilcoxon rank sum test with continuity correction

data: x and y
W = 5596, p-value = 0.1457
alternative hypothesis: true location shift is not equal to 0

> qqplot(x, y); abline(0,1)
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Same population mean and variance. Large sample size.
> x <- rnorm(10000, mean=1)
> y <- rexp(10000, rate=1)
> wilcox.test(x, y)

Wilcoxon rank sum test with continuity correction

data: x and y
W = 54176000, p-value < 2.2e-16
alternative hypothesis: true location shift is not equal to 0

> qqplot(x, y); abline(0,1)
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Same mean, very different variances.
> x <- rnorm(100, mean=1, sd=0.01)
> y <- rexp(100, rate=1)
> wilcox.test(x, y)

Wilcoxon rank sum test with continuity correction

data: x and y
W = 5435, p-value = 0.2884
alternative hypothesis: true location shift is not equal to 0

> qqplot(x, y); abline(0,1)
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Same variances, different means.
> x <- rnorm(100, mean=2)
> y <- rexp(100, rate=1)
> wilcox.test(x, y)

Wilcoxon rank sum test with continuity correction

data: x and y
W = 7672, p-value = 6.687e-11
alternative hypothesis: true location shift is not equal to 0

> qqplot(x, y); abline(0,1)
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Same population mean and variance.
> x <- rnorm(100, mean=1)
> y <- rexp(100, rate=1)
> wilcox.test(x, y, paired=TRUE)

Wilcoxon signed rank test with continuity correction

data: x and y
V = 2838, p-value = 0.2826
alternative hypothesis: true location shift is not equal to 0

> hist(y-x)
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Same population mean and variance. Large sample size.
> x <- rnorm(10000, mean=1)
> y <- rexp(10000, rate=1)
> wilcox.test(x, y, paired=TRUE)

Wilcoxon signed rank test with continuity correction

data: x and y
V = 26200000, p-value = 3.371e-05
alternative hypothesis: true location shift is not equal to 0

> hist(y-x)
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Permutation t-test
As above, suppose X1, X2, . . . , Xm

iid∼ FX and Y1, Y2, . . . , Yn
iid∼ FY , and we wish to test H0 : FX = FY vs

H1 : FX 6= FY . However, suppose we additionally know that Var(X) = Var(Y ). We can use a t-statistic to
test this hypothesis:

t = x− y√( 1
m + 1

n

)
s2

where s2 is the pooled sample variance.

To obtain the null distribution, we randomly permute the observations to assignm data points to the X sample
and n to the Y sample. This yields permutation data set x∗ = (x∗1, x∗2, . . . , x∗m)T and y∗ = (y∗1 , y∗2 , . . . , y∗n)T .
We form null t-statistic

t∗ = x∗ − y∗√( 1
m + 1

n

)
s2∗

where again s2∗ is the pooled sample variance.

In order to obtain a p-value, we calculate t∗(b) for b = 1, 2, . . . , B permutation data sets.

The p-value of t is then the proportion of permutation statistics as or more extreme than the observed
statistic:

p-value(t) = 1
B

B∑
b=1

1
(
|t∗(b)| ≥ |t|

)
.



Method of Moments
Suppose that X1, X2, . . . , Xn

iid∼ F . By the strong law of large numbers we have, as n→∞

∑n
i=1 X

k
i

n

a.s.−→ EF
[
Xk
]

when EF
[
Xk
]
exists.

This means that we can nonparametrically estimate the moments of a distribution. Also, in the parametric
setting, these moments can be used to form parameter estimates.

Definition
Suppose that X1, X2, . . . , Xn

iid∼ Fθ where θ is d-dimensional.

Calculate moments E
[
Xk
]
for k = 1, 2, . . . , d′ where d′ ≥ d.

For each parameter j = 1, 2, . . . , d, solve for θj in terms of E
[
Xk
]
for k = 1, 2, . . . , d′.

The method of moments estimator of θj is formed by replacing the function of moments E
[
Xk
]
that equals

θj with the empirical moments
∑n
i=1 X

k
i /n.

Example: Normal
For a Normal(µ, σ2) distribution, we have

E[X] = µ

E
[
X2] = σ2 + µ2

Solving for µ and σ2, we have µ = E[X] and σ2 = E[X2]−E[X]2. This yields method of moments estimators

µ̃ =
∑n
i=1 Xi

n
, σ̃2 =

∑n
i=1 X

2
i

n
−
[∑n

i=1 Xi

n

]2

.

Exploring Goodness of Fit
As mentioned above, moments can be nonparametrically estimated. At the same time, for a given parametric
distribution, these moments can also be written in terms of the parameters.

For example, consider a single parameter exponential family distribution. The variance is going to be defined
in terms of the parameter. At the same time, we can estimate variance through the empirical moments

∑n
i=1 X

2
i

n
−
[∑n

i=1 Xi

n

]2

.

In the scenario where several sets of variables are measured, the MLEs of the variance in terms of the single
parameter can be compared to the moment estimates of variance to assess goodness of fit of that distribution.



Types of Models
Probabilistic Models
So far we have covered inference of paramters that quantify a population of interest.

This is called inference of probabilistic models.

Multivariate Models
Some of the probabilistic models we considered involve calculating conditional probabilities such as Pr(Z|X;θ)
or Pr(θ|X).

It is often the case that we would like to build a model that explains the variation of one variable in terms of
other variables. Statistical modeling typically refers to this goal.

Variables
Let’s suppose our does comes in the form (X1, Y1), (X2, Y2), . . . , (Xn, Yn) ∼ F .

We will call Xi = (Xi1, Xi2, . . . , Xip) ∈ R1×p the explanatory variables and Yi ∈ R the dependent
variable or response variable.

We can collect all variables as matrices

Y n×1 and Xn×p

where each row is a unique observation.

Statistical Model
Statistical models are concerned with how variables are dependent. The most general model would be to infer

Pr(Y |X) = h(X)

where we would specifically study the form of h(·) to understand how Y is dependent on X.

A more modest goal is to infer the transformed conditional expecation

g (E[Y |X]) = h(X)

which sometimes leads us back to an estimate of Pr(Y |X).

Parametric vs Nonparametric
A parametric model is a pre-specified form of h(X) whose terms can be characterized by a formula and
interpreted. This usually involves parameters on which inference can be performed, such as coefficients in a
linear model.

A nonparametric model is a data-driven form of h(X) that is often very flexible and is not easily expressed
or intepreted. A nonparametric model often does not include parameters on which we can do inference.



Simple Linear Regression
For random variables (X1, Y1), (X2, Y2), . . . , (Xn, Yn), simple linear regression estimates the model

Yi = β1 + β2Xi + Ei

where E[Ei] = 0, Var(Ei) = σ2, and Cov(Ei, Ej) = 0 for all 1 ≤ i, j ≤ n and i 6= j.

Note that in this model E[Y |X] = β1 + β2X.

Ordinary Least Squares
Ordinary least squares (OLS) estimates the model

Yi = β1Xi1 + β2Xi2 + . . .+ βpXip + Ei

= Xiβ + Ei

where E[Ei] = 0, Var(Ei) = σ2, and Cov(Ei, Ej) = 0 for all 1 ≤ i, j ≤ n and i 6= j.

Note that typically Xi1 = 1 for all i so that β1Xi1 = β1 serves as the intercept.

Generalized Least Squares
Generalized least squares (GLS) assumes the same model as OLS, except it allows for heteroskedasticity
and covariance among the Ei. Specifically, it is assumed that E = (E1, . . . , En)T is distributed as

En×1 ∼ (0,Σ)

where 0 is the expected value Σ = (σij) is the n× n symmetric covariance matrix.

Matrix Form of Linear Models
We can write the models as

Y n×1 = Xn×pβp×1 +En×1

where simple linear regression, OLS, and GLS differ in the value of p or the distribution of the Ei. We can
also write the conditional expecation and covariance as

E[Y |X] = Xβ, Cov(Y |X) = Σ.

Least Squares Regression
In simple linear regression, OLS, and GLS, the β parameters are fit by minimizing the sum of squares between
Y and Xβ.

Fitting these models by “least squares” satisfies two types of optimality:

1. Gauss-Markov Theorem
2. Maximum likelihood estimate when in addition E ∼ MVNn(0,Σ)

Details will follow on these.

https://en.wikipedia.org/wiki/Gauss\T1\textendash Markov_theorem
https://en.wikipedia.org/wiki/Ordinary_least_squares#Maximum_likelihood


Generalized Linear Models
The generalized linear model (GLM) builds from OLS and GLS to allow the response variable to be distributed
according to an exponential family distribution. Suppose that η(θ) is function of the expected value into the
natural parameter. The estimated model is

η (E[Y |X]) = Xβ

which is fit by maximized likelihood estimation.

Generalized Additive Models
Next week, we will finally arrive at inferring semiparametric models where Y |X is distributed according to
an exponential family distribution. The models, which are called generalized additive models (GAMs),
will be of the form

η (E[Y |X]) =
p∑
j=1

d∑
k=1

hk(Xj)

where η is the canonical link function and the hk(·) functions are very flexible.

Some Trade-offs
There are several important trade-offs encountered in statistical modeling:

• Bias vs variance
• Accuracy vs computational time
• Flexibility vs intepretability

These are not mutually exclusive phenomena.

Bias and Variance
Suppose we estimate Y = h(X) + E by some Ŷ = ĥ(X). The following bias-variance trade-off exists:

E
[(
Y − Ŷ

)2
]

= E
[(
h(X) + E − ĥ(X)

)2
]

= E
[(
h(X)− ĥ(X)

)2
]

+ Var(E)

=
(
h(X)− E[ĥ(X)]

)2
+ Var

(
ĥ(X)

)2
+ Var(E)

= bias2 + variance + Var(E)

Motivating Examples
Sample Correlation
Least squares regression “modelizes” correlation. Suppose we observe n pairs of data (x1, y1), (x2, y2), . . . , (xn, yn).
Their sample correlation is



rxy =
∑n
i=1(xi − x)(yi − y)√∑n

i=1(xi − x)2∑n
i=1(yi − y)2

(1)

=
∑n
i=1(xi − x)(yi − y)

(n− 1)sxsy
(2)

where sx and sy are the sample standard deviations of each measured variable.

Example: Hand Size Vs. Height

> library("MASS")
> data("survey", package="MASS")
> head(survey)

Sex Wr.Hnd NW.Hnd W.Hnd Fold Pulse Clap Exer Smoke Height
1 Female 18.5 18.0 Right R on L 92 Left Some Never 173.00
2 Male 19.5 20.5 Left R on L 104 Left None Regul 177.80
3 Male 18.0 13.3 Right L on R 87 Neither None Occas NA
4 Male 18.8 18.9 Right R on L NA Neither None Never 160.00
5 Male 20.0 20.0 Right Neither 35 Right Some Never 165.00
6 Female 18.0 17.7 Right L on R 64 Right Some Never 172.72

M.I Age
1 Metric 18.250
2 Imperial 17.583
3 <NA> 16.917
4 Metric 20.333
5 Metric 23.667
6 Imperial 21.000

> ggplot(data = survey, mapping=aes(x=Wr.Hnd, y=Height)) +
+ geom_point() + geom_vline(xintercept=mean(survey$Wr.Hnd, na.rm=TRUE)) +
+ geom_hline(yintercept=mean(survey$Height, na.rm=TRUE))
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Cor. of Hand Size and Height

> cor.test(x=survey$Wr.Hnd, y=survey$Height)

Pearson's product-moment correlation

data: survey$Wr.Hnd and survey$Height
t = 10.792, df = 206, p-value < 2.2e-16
alternative hypothesis: true correlation is not equal to 0
95 percent confidence interval:
0.5063486 0.6813271

sample estimates:
cor

0.6009909

L/R Hand Sizes

> ggplot(data = survey) +
+ geom_point(aes(x=Wr.Hnd, y=NW.Hnd))
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Correlation of Hand Sizes

> cor.test(x=survey$Wr.Hnd, y=survey$NW.Hnd)

Pearson's product-moment correlation

data: survey$Wr.Hnd and survey$NW.Hnd
t = 45.712, df = 234, p-value < 2.2e-16
alternative hypothesis: true correlation is not equal to 0
95 percent confidence interval:
0.9336780 0.9597816

sample estimates:
cor

0.9483103

Davis Data

> library("car")
> data("Davis", package="car")
Warning in data("Davis", package = "car"): data set 'Davis' not found

> htwt <- tbl_df(Davis)
> htwt[12,c(2,3)] <- htwt[12,c(3,2)]
> head(htwt)
# A tibble: 6 x 5

sex weight height repwt repht



<fct> <int> <int> <int> <int>
1 M 77 182 77 180
2 F 58 161 51 159
3 F 53 161 54 158
4 M 68 177 70 175
5 F 59 157 59 155
6 M 76 170 76 165

Height and Weight

> ggplot(htwt) +
+ geom_point(aes(x=height, y=weight, color=sex), size=2, alpha=0.5) +
+ scale_color_manual(values=c("red", "blue"))
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Correlation of Height and Weight

> cor.test(x=htwt$height, y=htwt$weight)

Pearson's product-moment correlation

data: htwt$height and htwt$weight
t = 17.04, df = 198, p-value < 2.2e-16
alternative hypothesis: true correlation is not equal to 0
95 percent confidence interval:
0.7080838 0.8218898

sample estimates:



cor
0.7710743

Correlation Among Females

> htwt %>% filter(sex=="F") %>%
+ cor.test(~ height + weight, data = .)

Pearson's product-moment correlation

data: height and weight
t = 6.2801, df = 110, p-value = 6.922e-09
alternative hypothesis: true correlation is not equal to 0
95 percent confidence interval:
0.3627531 0.6384268

sample estimates:
cor

0.5137293

Correlation Among Males

> htwt %>% filter(sex=="M") %>%
+ cor.test(~ height + weight, data = .)

Pearson's product-moment correlation

data: height and weight
t = 5.9388, df = 86, p-value = 5.922e-08
alternative hypothesis: true correlation is not equal to 0
95 percent confidence interval:
0.3718488 0.6727460

sample estimates:
cor

0.5392906

Why are the stratified correlations lower?

Simple Linear Regression
Definition
For random variables (X1, Y1), (X2, Y2), . . . , (Xn, Yn), simple linear regression estimates the model

Yi = β1 + β2Xi + Ei

where E[Ei] = 0, Var(Ei) = σ2, and Cov(Ei, Ej) = 0 for all 1 ≤ i, j ≤ n and i 6= j.

Rationale
• Least squares linear regression is one of the simplest and most useful modeling systems for building

a model that explains the variation of one variable in terms of other variables.



• It is simple to fit, it satisfies some optimality criteria, and it is straightforward to check assumptions on
the data so that statistical inference can be performed.

Setup
• Suppose that we have observed n pairs of data (x1, y1), (x2, y2), . . . , (xn, yn).

• Least squares linear regression models variation of the response variable y in terms of the
explanatory variable x in the form of β1 + β2x, where β1 and β2 are chosen to satisfy a least squares
optimization.

Line Minimizing Squared Error
The least squares regression line is formed from the value of β1 and β2 that minimize:

n∑
i=1

(yi − β1 − β2xi)2
.

For a given set of data, there is a unique solution to this minimization as long as there are at least two unique
values among x1, x2, . . . , xn.

Let β̂1 and β̂2 be the values that minimize this sum of squares.

Least Squares Solution
These values are:

β̂2 = rxy
sy
sx

β̂1 = y − β̂2x

These values have a useful interpretation.



Visualizing Least Squares Line
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Example: Height and Weight

> ggplot(data=htwt, mapping=aes(x=height, y=weight)) +
+ geom_point(size=2, alpha=0.5) +
+ geom_smooth(method="lm", se=FALSE, formula=y~x)
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Calculate the Line Directly

> beta2 <- cor(htwt$height, htwt$weight) *
+ sd(htwt$weight) / sd(htwt$height)
> beta2
[1] 1.150092
>
> beta1 <- mean(htwt$weight) - beta2 * mean(htwt$height)
> beta1
[1] -130.9104
>
> yhat <- beta1 + beta2 * htwt$height

Plot the Line

> df <- data.frame(htwt, yhat=yhat)
> ggplot(data=df) + geom_point(aes(x=height, y=weight), size=2, alpha=0.5) +
+ geom_line(aes(x=height, y=yhat), color="blue", size=1.2)
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Observed Data, Fits, and Residuals
We observe data (x1, y1), . . . , (xn, yn). Note that we only observe Xi and Yi from the generative model
Yi = β1 + β2Xi + Ei.

We calculate fitted values and observed residuals:

ŷi = β̂1 + β̂2xi

êi = yi − ŷi

By construction, it is the case that
∑n
i=1 êi = 0.

Proportion of Variation Explained
The proportion of variance explained by the fitted model is called R2 or r2. It is calculated by:

r2 =
s2
ŷ

s2
y

lm() Function in R
Calculate the Line in R
The syntax for a model in R is



response variable ~ explanatory variables

where the explanatory variables component can involve several types of terms.
> myfit <- lm(weight ~ height, data=htwt)
> myfit

Call:
lm(formula = weight ~ height, data = htwt)

Coefficients:
(Intercept) height

-130.91 1.15

An lm Object is a List

> class(myfit)
[1] "lm"
> is.list(myfit)
[1] TRUE
> names(myfit)
[1] "coefficients" "residuals" "effects" "rank"
[5] "fitted.values" "assign" "qr" "df.residual"
[9] "xlevels" "call" "terms" "model"

From the R Help
lm returns an object of class “lm” or for multiple responses of class c(“mlm”, “lm”).

The functions summary and anova are used to obtain and print a summary and analysis of variance
table of the results. The generic accessor functions coefficients, effects, fitted.values and residuals
extract various useful features of the value returned by lm.

Some of the List Items
These are some useful items to access from the lm object:

• coefficients: a named vector of coefficients
• residuals: the residuals, that is response minus fitted values.
• fitted.values: the fitted mean values.
• df.residual: the residual degrees of freedom.
• call: the matched call.
• model: if requested (the default), the model frame used.

summary()

> summary(myfit)

Call:
lm(formula = weight ~ height, data = htwt)

Residuals:
Min 1Q Median 3Q Max

-19.658 -5.381 -0.555 4.807 42.894



Coefficients:
Estimate Std. Error t value Pr(>|t|)

(Intercept) -130.91040 11.52792 -11.36 <2e-16 ***
height 1.15009 0.06749 17.04 <2e-16 ***
---
Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1

Residual standard error: 8.505 on 198 degrees of freedom
Multiple R-squared: 0.5946, Adjusted R-squared: 0.5925
F-statistic: 290.4 on 1 and 198 DF, p-value: < 2.2e-16

summary() List Elements

> mysummary <- summary(myfit)
> names(mysummary)
[1] "call" "terms" "residuals" "coefficients"
[5] "aliased" "sigma" "df" "r.squared"
[9] "adj.r.squared" "fstatistic" "cov.unscaled"

Using tidy()

> library(broom)
> tidy(myfit)
# A tibble: 2 x 5

term estimate std.error statistic p.value
<chr> <dbl> <dbl> <dbl> <dbl>

1 (Intercept) -131. 11.5 -11.4 2.44e-23
2 height 1.15 0.0675 17.0 1.12e-40

Proportion of Variation Explained
The proportion of variance explained by the fitted model is called R2 or r2. It is calculated by:

r2 =
s2
ŷ

s2
y

> summary(myfit)$r.squared
[1] 0.5945555
>
> var(myfit$fitted.values)/var(htwt$weight)
[1] 0.5945555

Assumptions to Verify
The assumptions on the above linear model are really about the joint distribution of the residuals, which are
not directly observed. On data, we try to verify:

1. The fitted values and the residuals show no trends with respect to each other
2. The residuals are distributed approximately Normal(0, σ2)

• A constant variance is called homoscedasticity
• A non-constant variance is called heteroscedascity

3. There are no lurking variables

https://en.wikipedia.org/wiki/Homoscedasticity
https://en.wikipedia.org/wiki/Heteroscedasticity


There are two plots we will use in this course to investigate the first two.

Residual Distribution

> plot(myfit, which=1)

40 50 60 70 80 90

−
20

0
20

40

Fitted values

R
es

id
ua

ls

21

30 97

Normal Residuals Check

> plot(myfit, which=2)
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Ordinary Least Squares
Ordinary least squares (OLS) estimates the model

Yi = β1Xi1 + β2Xi2 + . . .+ βpXip + Ei

= Xiβ + Ei

where E[Ei] = 0, Var(Ei) = σ2, and Cov(Ei, Ej) = 0 for all 1 ≤ i, j ≤ n and i 6= j.

Note that typically Xi1 = 1 for all i so that β1Xi1 = β1 serves as the intercept.

OLS Solution
The estimates of β1, β2, . . . , βp are found by identifying the values that minimize:

n∑
i=1

[Yi − (β1Xi1 + β2Xi2 + . . .+ βpXip)]2

= (Y −Xβ)T (Y −Xβ)

The solution is expressed in terms of matrix algebra computations:

β̂ = (XTX)−1XTY .

Sample Variance
Let the predicted values of the model be

Ŷ = Xβ̂ = X(XTX)−1XTY .

We estimate σ2 by the OLS sample variance

S2 =
∑n
i=1(Yi − Ŷi)2

n− p
.

Sample Covariance
The p-vector β̂ has covariance matrix

Cov(β̂|X) = (XTX)−1σ2.

Its estimated covariance matrix is

Ĉov(β̂) = (XTX)−1S2.



Expected Values
Under the assumption that E[Ei] = 0, Var(Ei) = σ2, and Cov(Ei, Ej) = 0 for all 1 ≤ i, j ≤ n and i 6= j, we
have the following:

E
[
β̂
∣∣∣X] = β

E
[
S2∣∣X] = σ2

E
[

(XTX)−1S2
∣∣∣X] = Cov

(
β̂
)

Cov
(
β̂j , Yi − Ŷi

)
= 0.

Standard Error
The standard error of β̂j is the square root of the (j, j) diagonal entry of (XTX)−1σ2

se(β̂j) =
√[

(XTX)−1σ2
]
jj

and estimated standard error is

ŝe(β̂j) =
√[

(XTX)−1S2
]
jj

Proportion of Variance Explained
The proportion of variance explained is defined equivalently to the simple linear regression scneario:

R2 =
∑n
i=1(Ŷi − Ȳ )2∑n
i=1(Yi − Ȳ )2

.

Normal Errors
Suppose we assume E1, E2, . . . , En

iid∼ Normal(0, σ2). Then

`
(
β, σ2;Y ,X

)
∝ −n log(σ2)− 1

σ2 (Y −Xβ)T (Y −Xβ).

Since minimizing (Y −Xβ)T (Y −Xβ) maximizes the likelihood with respect to β, this implies β̂ is the
MLE for β.

It can also be calculated that n−p
n S2 is the MLE for σ2.



Sampling Distribution

When E1, E2, . . . , En
iid∼ Normal(0, σ2), it follows that, conditional on X:

β̂ ∼ MVNp
(
β, (XTX)−1σ2

)
S2n− p

σ2 ∼ χ2
n−p

β̂j − βj
ŝe(β̂j)

∼ tn−p

CLT
Under the assumption that E[Ei] = 0, Var(Ei) = σ2, and Cov(Ei, Ej) = 0 for i 6= j, it follows that as n→∞,

√
n
(
β̂ − β

)
D−→ MVNp

(
0, (XTX)−1σ2

)
.

Gauss-Markov Theorem
Under the assumption that E[Ei] = 0, Var(Ei) = σ2, and Cov(Ei, Ej) = 0 for i 6= j, the Gauss-Markov
theorem shows that among all BLUEs, best linear unbiased estimators, the least squares estimate has
the smallest mean-squared error.

Specifically, suppose that β̃ is a linear estimator (calculated from a linear operator on Y ) where E[β̃|X] = β.
Then

E
[

(Y −Xβ̂)T (Y −Xβ̂)
∣∣∣X] ≤ E

[
(Y −Xβ̃)T (Y −Xβ̃)

∣∣X] .
Generalized Least Squares
Generalized least squares (GLS) assumes the same model as OLS, except it allows for heteroskedasticity
and covariance among the Ei. Specifically, it is assumed that E = (E1, . . . , En)T is distributed as

En×1 ∼ (0,Σ)
where 0 is the expected value Σ = (σij) is the n× n covariance matrix.

The most straightforward way to navigate GLS results is to recognize that

Σ−1/2Y = Σ−1/2Xβ + Σ−1/2E

satisfies the assumptions of the OLS model.

GLS Solution
The solution to minimizing

(Y −Xβ)TΣ−1(Y −Xβ)

is

β̂ =
(
XTΣ−1X

)−1
XTΣ−1Y .



Other Results
The issue of estimating Σ if it is unknown is complicated. Other than estimates of σ2, the results from the
OLS section recapitulate by replacing Y = Xβ +E with

Σ−1/2Y = Σ−1/2Xβ + Σ−1/2E.

For example, as n→∞,

√
n
(
β̂ − β

)
D−→ MNVp

(
0, (XTΣ−1X)−1

)
.

We also still have that

E
[
β̂
∣∣∣X] = β.

And when E ∼ MVNn(0,Σ), β̂ is the MLE.

OLS in R
R implements OLS of multiple explanatory variables exactly the same as with a single explanatory variable,
except we need to show the sum of all explanatory variables that we want to use.
> lm(weight ~ height + sex, data=htwt)

Call:
lm(formula = weight ~ height + sex, data = htwt)

Coefficients:
(Intercept) height sexM

-76.6167 0.8106 8.2269

Weight Regressed on Height + Sex

> summary(lm(weight ~ height + sex, data=htwt))

Call:
lm(formula = weight ~ height + sex, data = htwt)

Residuals:
Min 1Q Median 3Q Max

-20.131 -4.884 -0.640 5.160 41.490

Coefficients:
Estimate Std. Error t value Pr(>|t|)

(Intercept) -76.6167 15.7150 -4.875 2.23e-06 ***
height 0.8105 0.0953 8.506 4.50e-15 ***
sexM 8.2269 1.7105 4.810 3.00e-06 ***
---
Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1



Residual standard error: 8.066 on 197 degrees of freedom
Multiple R-squared: 0.6372, Adjusted R-squared: 0.6335
F-statistic: 173 on 2 and 197 DF, p-value: < 2.2e-16

One Variable, Two Scales
We can include a single variable but on two different scales:
> htwt <- htwt %>% mutate(height2 = height^2)
> summary(lm(weight ~ height + height2, data=htwt))

Call:
lm(formula = weight ~ height + height2, data = htwt)

Residuals:
Min 1Q Median 3Q Max

-24.265 -5.159 -0.499 4.549 42.965

Coefficients:
Estimate Std. Error t value Pr(>|t|)

(Intercept) 107.117140 175.246872 0.611 0.542
height -1.632719 2.045524 -0.798 0.426
height2 0.008111 0.005959 1.361 0.175

Residual standard error: 8.486 on 197 degrees of freedom
Multiple R-squared: 0.5983, Adjusted R-squared: 0.5943
F-statistic: 146.7 on 2 and 197 DF, p-value: < 2.2e-16

Interactions
It is possible to include products of explanatory variables, which is called an interaction.
> summary(lm(weight ~ height + sex + height:sex, data=htwt))

Call:
lm(formula = weight ~ height + sex + height:sex, data = htwt)

Residuals:
Min 1Q Median 3Q Max

-20.869 -4.835 -0.897 4.429 41.122

Coefficients:
Estimate Std. Error t value Pr(>|t|)

(Intercept) -45.6730 22.1342 -2.063 0.0404 *
height 0.6227 0.1343 4.637 6.46e-06 ***
sexM -55.6571 32.4597 -1.715 0.0880 .
height:sexM 0.3729 0.1892 1.971 0.0502 .
---
Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1

Residual standard error: 8.007 on 196 degrees of freedom
Multiple R-squared: 0.6442, Adjusted R-squared: 0.6388
F-statistic: 118.3 on 3 and 196 DF, p-value: < 2.2e-16



More on Interactions
What happens when there is an interaction between a quantitative explanatory variable and a factor
explanatory variable? In the next plot, we show three models:

• Grey solid: lm(weight ~ height, data=htwt)
• Color dashed: lm(weight ~ height + sex, data=htwt)
• Color solid: lm(weight ~ height + sex + height:sex, data=htwt)

Visualizing Three Different Models
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Categorical Explanatory Variables
Example: Chicken Weights

> data("chickwts", package="datasets")
> head(chickwts)

weight feed
1 179 horsebean
2 160 horsebean
3 136 horsebean
4 227 horsebean
5 217 horsebean
6 168 horsebean
> summary(chickwts$feed)

casein horsebean linseed meatmeal soybean sunflower
12 10 12 11 14 12



Factor Variables in lm()

> chick_fit <- lm(weight ~ feed, data=chickwts)
> summary(chick_fit)

Call:
lm(formula = weight ~ feed, data = chickwts)

Residuals:
Min 1Q Median 3Q Max

-123.909 -34.413 1.571 38.170 103.091

Coefficients:
Estimate Std. Error t value Pr(>|t|)

(Intercept) 323.583 15.834 20.436 < 2e-16 ***
feedhorsebean -163.383 23.485 -6.957 2.07e-09 ***
feedlinseed -104.833 22.393 -4.682 1.49e-05 ***
feedmeatmeal -46.674 22.896 -2.039 0.045567 *
feedsoybean -77.155 21.578 -3.576 0.000665 ***
feedsunflower 5.333 22.393 0.238 0.812495
---
Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1

Residual standard error: 54.85 on 65 degrees of freedom
Multiple R-squared: 0.5417, Adjusted R-squared: 0.5064
F-statistic: 15.36 on 5 and 65 DF, p-value: 5.936e-10

Plot the Fit

> plot(chickwts$feed, chickwts$weight, xlab="Feed", ylab="Weight", las=2)
> points(chickwts$feed, chick_fit$fitted.values, col="blue", pch=20, cex=2)
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ANOVA (Version 1)
ANOVA (analysis of variance) was originally developed as a statistical model and method for comparing
differences in mean values between various groups.

ANOVA quantifies and tests for differences in response variables with respect to factor variables.

In doing so, it also partitions the total variance to that due to within and between groups, where groups are
defined by the factor variables.

anova()

The classic ANOVA table:
> anova(chick_fit)
Analysis of Variance Table

Response: weight
Df Sum Sq Mean Sq F value Pr(>F)

feed 5 231129 46226 15.365 5.936e-10 ***
Residuals 65 195556 3009
---
Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1

> n <- length(chick_fit$residuals) # n <- 71
> (n-1)*var(chick_fit$fitted.values)
[1] 231129.2
> (n-1)*var(chick_fit$residuals)



[1] 195556
> (n-1)*var(chickwts$weight) # sum of above two quantities
[1] 426685.2
> (231129/5)/(195556/65) # F-statistic
[1] 15.36479

How It Works

> levels(chickwts$feed)
[1] "casein" "horsebean" "linseed" "meatmeal" "soybean" "sunflower"
> head(chickwts, n=3)

weight feed
1 179 horsebean
2 160 horsebean
3 136 horsebean
> tail(chickwts, n=3)

weight feed
69 222 casein
70 283 casein
71 332 casein
> x <- model.matrix(weight ~ feed, data=chickwts)
> dim(x)
[1] 71 6

Top of Design Matrix

> head(x)
(Intercept) feedhorsebean feedlinseed feedmeatmeal feedsoybean

1 1 1 0 0 0
2 1 1 0 0 0
3 1 1 0 0 0
4 1 1 0 0 0
5 1 1 0 0 0
6 1 1 0 0 0

feedsunflower
1 0
2 0
3 0
4 0
5 0
6 0

Bottom of Design Matrix

> tail(x)
(Intercept) feedhorsebean feedlinseed feedmeatmeal feedsoybean

66 1 0 0 0 0
67 1 0 0 0 0
68 1 0 0 0 0
69 1 0 0 0 0
70 1 0 0 0 0
71 1 0 0 0 0



feedsunflower
66 0
67 0
68 0
69 0
70 0
71 0

Model Fits

> chick_fit$fitted.values %>% round(digits=4) %>% unique()
[1] 160.2000 218.7500 246.4286 328.9167 276.9091 323.5833

> chickwts %>% group_by(feed) %>% summarize(mean(weight))
# A tibble: 6 x 2

feed `mean(weight)`
<fct> <dbl>

1 casein 324.
2 horsebean 160.
3 linseed 219.
4 meatmeal 277.
5 soybean 246.
6 sunflower 329.

Variable Transformations
Rationale
In order to obtain reliable model fits and inference on linear models, the model assumptions described earlier
must be satisfied.

Sometimes it is necessary to transform the response variable and/or some of the explanatory variables.

This process should involve data visualization and exploration.

Power and Log Transformations
It is often useful to explore power and log transforms of the variables, e.g., log(y) or yλ for some λ (and
likewise log(x) or xλ).

You can read more about the Box-Cox family of power transformations.

Diamonds Data

> data("diamonds", package="ggplot2")
> head(diamonds)
# A tibble: 6 x 10

carat cut color clarity depth table price x y z
<dbl> <ord> <ord> <ord> <dbl> <dbl> <int> <dbl> <dbl> <dbl>

1 0.23 Ideal E SI2 61.5 55 326 3.95 3.98 2.43
2 0.21 Premium E SI1 59.8 61 326 3.89 3.84 2.31
3 0.23 Good E VS1 56.9 65 327 4.05 4.07 2.31
4 0.290 Premium I VS2 62.4 58 334 4.2 4.23 2.63

https://en.wikipedia.org/wiki/Power_transform


5 0.31 Good J SI2 63.3 58 335 4.34 4.35 2.75
6 0.24 Very Good J VVS2 62.8 57 336 3.94 3.96 2.48

Nonlinear Relationship

> ggplot(data = diamonds) +
+ geom_point(mapping=aes(x=carat, y=price, color=clarity), alpha=0.3)
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Regression with Nonlinear Relationship

> diam_fit <- lm(price ~ carat + clarity, data=diamonds)
> anova(diam_fit)
Analysis of Variance Table

Response: price
Df Sum Sq Mean Sq F value Pr(>F)

carat 1 7.2913e+11 7.2913e+11 435639.9 < 2.2e-16 ***
clarity 7 3.9082e+10 5.5831e+09 3335.8 < 2.2e-16 ***
Residuals 53931 9.0264e+10 1.6737e+06
---
Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1

Residual Distribution



> plot(diam_fit, which=1)
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Normal Residuals Check

> plot(diam_fit, which=2)
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Log-Transformation

> ggplot(data = diamonds) +
+ geom_point(aes(x=carat, y=price, color=clarity), alpha=0.3) +
+ scale_y_log10(breaks=c(1000,5000,10000)) +
+ scale_x_log10(breaks=1:5)
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OLS on Log-Transformed Data

> diamonds <- mutate(diamonds, log_price = log(price, base=10),
+ log_carat = log(carat, base=10))
> ldiam_fit <- lm(log_price ~ log_carat + clarity, data=diamonds)
> anova(ldiam_fit)
Analysis of Variance Table

Response: log_price
Df Sum Sq Mean Sq F value Pr(>F)

log_carat 1 9771.9 9771.9 1452922.6 < 2.2e-16 ***
clarity 7 339.1 48.4 7203.3 < 2.2e-16 ***
Residuals 53931 362.7 0.0
---
Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1

Residual Distribution

> plot(ldiam_fit, which=1)
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Normal Residuals Check

> plot(ldiam_fit, which=2)
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Tree Pollen Study
Suppose that we have a study where tree pollen measurements are averaged every week, and these data are
recorded for 10 years. These data are simulated:
> pollen_study
# A tibble: 520 x 3

week year pollen
<int> <int> <dbl>

1 1 2001 1842.
2 2 2001 1966.
3 3 2001 2381.
4 4 2001 2141.
5 5 2001 2210.
6 6 2001 2585.
7 7 2001 2392.
8 8 2001 2105.
9 9 2001 2278.

10 10 2001 2384.
# ... with 510 more rows

Tree Pollen Count by Week

> ggplot(pollen_study) + geom_point(aes(x=week, y=pollen))
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A Clever Transformation
We can see there is a linear relationship between pollen and week if we transform week to be number of
weeks from the peak week.
> pollen_study <- pollen_study %>%
+ mutate(week_new = abs(week-20))

Note that this is a very different transformation from taking a log or power transformation.

week Transformed

> ggplot(pollen_study) + geom_point(aes(x=week_new, y=pollen))



Figure 1: PythMod
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OLS Goodness of Fit
Pythagorean Theorem
Least squares model fitting can be understood through the Pythagorean theorem: a2 + b2 = c2. However,
here we have:

n∑
i=1

Y 2
i =

n∑
i=1

Ŷ 2
i +

n∑
i=1

(Yi − Ŷi)2

where the Ŷi are the result of a linear projection of the Yi.



OLS Normal Model
In this section, let’s assume that (X1, Y1), . . . , (Xn, Yn) are distributed so that

Yi = β1Xi1 + β2Xi2 + . . .+ βpXip + Ei

= Xiβ + Ei

where E|X ∼ MVNn(0, σ2I). Note that we haven’t specified the distribution of the Xi rv’s.

Projection Matrices
In the OLS framework we have:

Ŷ = X(XTX)−1XTY .

The matrix P n×n = X(XTX)−1XT is a projection matrix. The vector Y is projected into the space
spanned by the column space of X.

Project matrices have the following properties:

• P is symmetric
• P is idempotent so that PP = P
• If X has column rank p, then P has rank p
• The eigenvalues of P are p 1’s and n− p 0’s
• The trace (sum of diagonal entries) is tr(P ) = p
• I − P is also a projection matrix with rank n− p

Decomposition
Note that P (I − P ) = P − PP = P − P = 0.

We have

‖Y ‖2
2 = Y TY = (PY + (I − P )Y )T (PY + (I − P )Y )

= (PY )T (PY ) + ((I − P )Y )T ((I − P )Y )
= ‖PY ‖2

2 + ‖(I − P )Y ‖2
2

where the cross terms disappear because P (I − P ) = 0.

Note: The `p norm of an n-vector w is defined as

‖w‖p =
(

n∑
i=1
|wi|p

)1/p

.

Above we calculated

‖w‖2
2 =

n∑
i=1

w2
i .



Distribution of Projection

Suppose that Y1, Y2, . . . , Yn
iid∼ Normal(0, σ2). This can also be written as Y ∼ MVNn(0, σ2I). It follows

that

PY ∼ MVNn(0, σ2PIP T ).

where PIP T = PP T = PP = P .

Also, (PY )T (PY ) = Y TP TPY = Y TPY , a quadratic form. Given the eigenvalues of P , Y TPY is
equivalent in distribution to p squared iid Normal(0,1) rv’s, so

Y TPY

σ2 ∼ χ2
p.

Distribution of Residuals
If PY = Ŷ are the fitted OLS values, then (I − P )Y = Y − Ŷ are the residuals.

It follows by the same argument as above that

Y T (I − P )Y
σ2 ∼ χ2

n−p.

It’s also straightforward to show that (I − P )Y ∼ MVNn(0, σ2(I − P )) and Cov(PY , (I − P )Y ) = 0.

Degrees of Freedom
The degrees of freedom, p, of a linear projection model fit is equal to

• The number of linearly independent columns of X
• The number of nonzero eigenvalues of P (where nonzero eigenvalues are equal to 1)
• The trace of the projection matrix, tr(P ).

The reason why we divide estimates of variance by n− p is because this is the number of effective independent
sources of variation remaining after the model is fit by projecting the n observations into a p dimensional
linear space.

Submodels
Consider the OLS model Y = Xβ +E where there are p columns of X and β is a p-vector.

Let X0 be a subset of p0 columns of X and let X1 be a subset of p1 columns, where 1 ≤ p0 < p1 ≤ p. Also,
assume that the columns of X0 are a subset of X1.

We can form Ŷ 0 = P 0Y where P 0 is the projection matrix built from X0. We can analogously form
Ŷ 1 = P 1Y .

Hypothesis Testing
Without loss of generality, suppose that β0 = (β1, β2, . . . , βp0)T and β1 = (β1, β2, . . . , βp1)T .

How do we compare these models, specifically to test H0 : (βp0+1, βp0+2, . . . , βp1) = 0 vs H1 :
(βp0+1, βp0+2, . . . , βp1) 6= 0?

The basic idea to perform this test is to compare the goodness of fits of each model via a pivotal statistic.
We will discuss the generalized LRT and ANOVA approaches.



Generalized LRT
Under the OLS Normal model, it follows that β̂0 = (XT

0X0)−1XT
0 Y is the MLE under the null hypothesis

and β̂1 = (XT
1X1)−1XT

1 Y is the unconstrained MLE. Also, the respective MLEs of σ2 are

σ̂2
0 =

∑n
i=1(Yi − Ŷ0,i)2

n

σ̂2
1 =

∑n
i=1(Yi − Ŷ1,i)2

n

where Ŷ 0 = X0β̂0 and Ŷ 1 = X1β̂1.

The generalized LRT statistic is

λ(X,Y ) =
L
(
β̂1, σ̂

2
1 ;X,Y

)
L
(
β̂0, σ̂

2
0 ;X,Y

)
where 2 log λ(X,Y ) has a χ2

p1−p0
null distribution.

Nested Projections
We can apply the Pythagorean theorem we saw earlier to linear subspaces to get:

‖Y ‖2
2 = ‖(I − P 1)Y ‖2

2 + ‖P 1Y ‖2
2

= ‖(I − P 1)Y ‖2
2 + ‖(P 1 − P 0)Y ‖2

2 + ‖P 0Y ‖2
2

We can also use the Pythagorean theorem to decompose the residuals from the smaller projection P 0:

‖(I − P 0)Y ‖2
2 = ‖(I − P 1)Y ‖2

2 + ‖(P 1 − P 0)Y ‖2
2

F Statistic
The F statistic compares the improvement of goodness in fit of the larger model to that of the smaller model
in terms of sums of squared residuals, and it scales this improvement by an estimate of σ2:

F =
[
‖(I − P 0)Y ‖2

2 − ‖(I − P 1)Y ‖2
2
]
/(p1 − p0)

‖(I − P 1)Y ‖2
2/(n− p1)

=

[∑n
i=1(Yi − Ŷ0,i)2 −

∑n
i=1(Yi − Ŷ1,i)2

]
/(p1 − p0)∑n

i=1(Yi − Ŷ1,i)2/(n− p1)

Since ‖(I − P 0)Y ‖2
2 − ‖(I − P 1)Y ‖2

2 = ‖(P 1 − P 0)Y ‖2
2, we can equivalently write the F statistic as:

F = ‖(P 1 − P 0)Y ‖2
2/(p1 − p0)

‖(I − P 1)Y ‖2
2/(n− p1)

=
∑n
i=1(Ŷ1,i − Ŷ0,i)2/(p1 − p0)∑n
i=1(Yi − Ŷ1,i)2/(n− p1)



F Distribution
Suppose we have independent random variables V ∼ χ2

a and W ∼ χ2
b . It follows that

V/a

W/b
∼ Fa,b

where Fa,b is the F distribution with (a, b) degrees of freedom.

By arguments similar to those given above, we have

‖(P 1 − P 0)Y ‖2
2

σ2 ∼ χ2
p1−p0

‖(I − P 1)Y ‖2
2

σ2 ∼ χ2
n−p1

and these two rv’s are independent.

F Test
Suppose that the OLS model holds where E|X ∼ MVNn(0, σ2I).

In order to test H0 : (βp0+1, βp0+2, . . . , βp1) = 0 vs H1 : (βp0+1, βp0+2, . . . , βp1) 6= 0, we can form the F
statistic as given above, which has null distribution Fp1−p0,n−p1 . The p-value is calculated as Pr(F ∗ ≥ F )
where F is the observed F statistic and F ∗ ∼ Fp1−p0,n−p1 .

If the above assumption on the distribution of E|X only approximately holds, then the F test p-value is also
an approximation.

Example: Davis Data

> library("car")
> data("Davis", package="car")
Warning in data("Davis", package = "car"): data set 'Davis' not found

> htwt <- tbl_df(Davis)
> htwt[12,c(2,3)] <- htwt[12,c(3,2)]
> head(htwt)
# A tibble: 6 x 5

sex weight height repwt repht
<fct> <int> <int> <int> <int>

1 M 77 182 77 180
2 F 58 161 51 159
3 F 53 161 54 158
4 M 68 177 70 175
5 F 59 157 59 155
6 M 76 170 76 165

Comparing Linear Models in R
Example: Davis Data

Suppose we are considering the three following models:



> f1 <- lm(weight ~ height, data=htwt)
> f2 <- lm(weight ~ height + sex, data=htwt)
> f3 <- lm(weight ~ height + sex + height:sex, data=htwt)

How do we determine if the additional terms in models f2 and f3 are needed?

ANOVA (Version 2)
A generalization of ANOVA exists that allows us to compare two nested models, quantifying their differences
in terms of goodness of fit and performing a hypothesis test of whether this difference is statistically significant.

A model is nested within another model if their difference is simply the absence of certain terms in the smaller
model.

The null hypothesis is that the additional terms have coefficients equal to zero, and the alternative hypothesis
is that at least one coefficient is nonzero.

Both versions of ANOVA can be described in a single, elegant mathematical framework.

Comparing Two Models with anova()

This provides a comparison of the improvement in fit from model f2 compared to model f1:
> anova(f1, f2)
Analysis of Variance Table

Model 1: weight ~ height
Model 2: weight ~ height + sex

Res.Df RSS Df Sum of Sq F Pr(>F)
1 198 14321
2 197 12816 1 1504.9 23.133 2.999e-06 ***
---
Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1

When There’s a Single Variable Difference
Compare above anova(f1, f2) p-value to that for the sex term from the f2 model:
> library(broom)
> tidy(f2)
# A tibble: 3 x 5

term estimate std.error statistic p.value
<chr> <dbl> <dbl> <dbl> <dbl>

1 (Intercept) -76.6 15.7 -4.88 2.23e- 6
2 height 0.811 0.0953 8.51 4.50e-15
3 sexM 8.23 1.71 4.81 3.00e- 6

Calculating the F-statistic

> anova(f1, f2)
Analysis of Variance Table

Model 1: weight ~ height
Model 2: weight ~ height + sex

Res.Df RSS Df Sum of Sq F Pr(>F)
1 198 14321



2 197 12816 1 1504.9 23.133 2.999e-06 ***
---
Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1

How the F-statistic is calculated:
> n <- nrow(htwt)
> ss1 <- (n-1)*var(f1$residuals)
> ss1
[1] 14321.11
> ss2 <- (n-1)*var(f2$residuals)
> ss2
[1] 12816.18
> ((ss1 - ss2)/anova(f1, f2)$Df[2])/(ss2/f2$df.residual)
[1] 23.13253

Calculating the Generalized LRT

> anova(f1, f2, test="LRT")
Analysis of Variance Table

Model 1: weight ~ height
Model 2: weight ~ height + sex

Res.Df RSS Df Sum of Sq Pr(>Chi)
1 198 14321
2 197 12816 1 1504.9 1.512e-06 ***
---
Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1

> library(lmtest)
> lrtest(f1, f2)
Likelihood ratio test

Model 1: weight ~ height
Model 2: weight ~ height + sex

#Df LogLik Df Chisq Pr(>Chisq)
1 3 -710.9
2 4 -699.8 1 22.205 2.45e-06 ***
---
Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1

These tests produce slightly different answers because anova() adjusts for degrees of freedom when estimating
the variance, whereas lrtest() is the strict generalized LRT. See here.

ANOVA on More Distant Models
We can compare models with multiple differences in terms:
> anova(f1, f3)
Analysis of Variance Table

Model 1: weight ~ height
Model 2: weight ~ height + sex + height:sex

Res.Df RSS Df Sum of Sq F Pr(>F)
1 198 14321

https://stats.stackexchange.com/questions/155474/r-why-does-lrtest-not-match-anovatest-lrt


2 196 12567 2 1754 13.678 2.751e-06 ***
---
Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1

Compare Multiple Models at Once
We can compare multiple models at once:
> anova(f1, f2, f3)
Analysis of Variance Table

Model 1: weight ~ height
Model 2: weight ~ height + sex
Model 3: weight ~ height + sex + height:sex

Res.Df RSS Df Sum of Sq F Pr(>F)
1 198 14321
2 197 12816 1 1504.93 23.4712 2.571e-06 ***
3 196 12567 1 249.04 3.8841 0.05015 .
---
Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
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