Nonparametric Statistics

1. An inference or model that does not use the probcbilin distribution geveatirg the date
2. Aspects of the probability dist'n man be kern, bat the complexity of the distin is unknown and is adaptive to the dato (gets better with more dank)

- Descriptive statistics and EDA are mostly nonporometri
- Semiparametre statistical inference: part of the model is parametric, part is nonparametric
Ex: $\underline{X_{i} \mid \mu_{i}} \sim \operatorname{Noond}\left(\mu_{i}, 1\right)$ 。 $\mu i \sim F($ arbitan $\sim$ dist in).
(1) Empinial dist's functions]
(2) Bootstrup
(3) Permutation methols next class meating
(4) boodress of fit
- method of noments

EDFs (empiriad distribution functions)
Say $X_{1}, X_{2}, \ldots, X_{n}$ id $F$ (some distritutin)
Let $f\left(x_{i} \leq y\right)= \begin{cases}0 & \text { if } x_{i}>y \\ 1 & \text { if } x_{i} \leq y\end{cases}$
/Random varrable: $\hat{F}_{\underline{x}}(y)=\frac{1}{n} \sum_{i=1}^{n} 1\left(x_{i} \leq_{y}\right)$
Obsened vurieble: $F_{\underline{x}}(y)=\frac{1}{n} \sum_{i=1}^{n} \mathcal{J}\left(x_{i} \leq y\right)$

EDF from Normal Data



Glivanko- Contelli themen

$$
\begin{aligned}
& \left\{\begin{array}{l}
\sup _{y \in \mathbb{R}}\left|\hat{F}_{x}(y)-F(y)\right| \\
\text { with proubilion }
\end{array}\right. \\
& \quad .
\end{aligned}
$$



Statistical Functionds

A statistical functional $T(F)$ is any function of $c d f, F$. Examples!

$$
\begin{aligned}
\mu(F) & =\int x d F(x) \quad(\text { geneal }) \\
& =\int x f(x)(\text { discrete }) \\
& =\int x f(x) d x \text { (cndinusus) } \\
\cdot b^{2}(F) & =\int(x-\mu(F))^{2} d F(x) \\
\cdot m(F) & =F^{-1}(1 / L)
\end{aligned}
$$

Plug-in Estimetors of Stutistial functinals fon EDF:

$$
\begin{aligned}
& \text { - } \hat{\mu}=\mu(\hat{F})=\int_{\hat{\wedge}} x d \hat{F}(x) \\
& =\sum_{i=1}^{n} x_{i} \hat{f}\left(x_{i}\right) \\
& =\sum_{i=1}^{n} x_{i} \frac{1}{n} \quad \text { (sample) } \\
& \text { - } \hat{b}^{2}=b^{2}(\hat{F})=\sum_{i=1}^{n}\left(x_{i}-\hat{\mu}\right)^{2} \frac{1}{n} \\
& \text { - } \hat{m}=m(\hat{F})=\hat{F}^{-1}(1 / 2)
\end{aligned}
$$

EDF CLT for a statiotizal functiud

$$
\frac{T(F)-T(\hat{F})}{\hat{s e}(T(\hat{F}))} \xrightarrow{n \rightarrow \infty} \operatorname{Norml}(0,1)
$$

Linear Statisticel Functumal:

$$
\begin{aligned}
& T(F)=\int a(x) d F(x) \\
& \operatorname{Var}(T(\hat{F}))=\frac{1}{n^{2}} 2 \sum_{i=1}^{n} \operatorname{Var}\left(a\left(x_{i}\right)\right) \\
&=\frac{\operatorname{Var} \operatorname{la}(x))}{n} \\
& \operatorname{se}(T(\hat{F}))=\sqrt{\frac{V_{a r}(a(x))}{n}} \\
& \hat{\operatorname{se}}(T(\hat{F}))=\sqrt{\frac{\operatorname{Var} \hat{F}}{}(a(x))}
\end{aligned}
$$

Bootstrap
Basic- idea: Use $\hat{F}$ (EDF) in place of $F$ to eft sampling distributions

Bootstrang Sample

$$
x_{1}, x_{2}, \ldots, x_{n} \stackrel{\text { 道 } F}{ }
$$

torm $\hat{F}$ EPF
If I woot 1 iid observatios from $\hat{F}$, sanple $n$ obsernations with replacerant from $\left\{x_{1}, x_{2}, \ldots, x_{n}\right\}$
$\hat{F}$ puts prosability $1 / n$ on each $X_{i}$

Pabilith of not beim sumpleds

$$
\left(1-\frac{1}{n}\right)^{n}
$$

Prêecentage of Data Present in a Bootstrap Sample
For a sample of size $n$, what percentage of the data is present in any given bootstrap sample?


Suppose wire interested in $\theta=T(F)$.
we estimate it by $\hat{\theta}=T\left(\hat{F}_{\underline{x}}\right)$
Idea:
For $b=1,2, \ldots, B$ we draw bootstrap data sets $x_{1}^{a(b)}, x_{i}^{+(b)} \ldots, x_{a}^{d(b)}$.

Exanper $n=100, \quad B=10,500$
We can calculate the estinctur $\hat{\theta}$ on each bootstrap sample:

$$
\hat{\theta}^{(1)}, \hat{\theta}^{*(2)}, \cdots, \hat{\theta}^{(B)}
$$

Three wangs to use boststap sanples to get cortidence intersals:
(1) Percentile interals
(2) Pisotsl internls

$$
\text { List } \operatorname{mon}_{\operatorname{mosh}}^{\operatorname{pios}}
$$

(3) studertized pinotal intersels
Lis mosks

1-2 Bootstrap Confidence Inteals
(C) Perentile irtersl:

Let $p_{\alpha / 2}^{\alpha}$ and $p_{1-\alpha / 2}^{\alpha}$ be the $\alpha / 2$ and $1-\alpha / 2$ percentiles if $\hat{\theta}^{\alpha(1)}, \hat{\theta}^{*(2)}, \ldots, \hat{\theta}^{(B)}$.

CI is then:

$$
\left(p^{\alpha} / / 2, p^{\infty} 1-\alpha / 2\right)
$$

Aside suppose $X_{1}, x_{2}, \ldots, X_{n} \sim \operatorname{Nornl}(0,1)$

$$
\begin{aligned}
& \text { EfF) } \left.\hat{F} \dot{\sim} \operatorname{Nomal}\left(\bar{X}, S^{2}\right)\right] \\
& \text { ai } \quad \text { BS }\left(x_{i}-\bar{x}\right) \Rightarrow \hat{F} \sim \operatorname{Noinl}\left(0, s^{2}\right) \\
& B S\left(\frac{x_{i}-\bar{x}}{\sqrt{S^{2}}}\right) \Rightarrow \hat{F} \sim \operatorname{Nosml}(0,1)
\end{aligned}
$$

studrize
(2) Pivotal intend (1>t moment pivotal internal):

We calculate perectiles on $\hat{\theta}^{(h)}-\hat{\theta}$ c call them $q^{2} \alpha$ : Then are bootstrap estimates of $q_{\alpha}$, whish on the a percentiles of $\hat{\theta}-\theta$

If we know $q \alpha$ then the following is $\tau 1-\alpha$ CI:

$$
\begin{aligned}
&\left(\hat{\theta}-q_{1-\alpha / 2}, \hat{\theta}-q_{\alpha / 2}\right) \\
& 1-\alpha=\operatorname{Pr}\left(q_{\alpha / 2} \leq \hat{\theta}-\theta \leq q_{1-\alpha / 2}\right) \\
&= \operatorname{Pr}\left(-q_{1-\alpha / 2} \leq \theta-\hat{\theta} \leq-q_{\alpha / 2}\right) \\
&= \operatorname{Pr}\left(\hat{\theta}-q_{1-\alpha / 2} \leq \theta \leq \hat{\theta}-q_{1 / 2}\right)
\end{aligned}
$$

Recall $\hat{\theta}-\hat{\theta}$ is approx. to $\hat{\theta}-a$
Suppose $p^{\alpha} \alpha$ is the $\alpha$ percentile of $\hat{\theta}^{\theta}$. Then $p^{\nu} \alpha-\hat{\theta}$ is the approx. $\alpha$ percentile of $\hat{\theta}-\theta$
Therefore $p_{d}-\hat{\theta}$ is the bis. estimate of $q \alpha$. Plugging this into the absue, we get the $(1-\alpha)$ CI Ts:

$$
\begin{aligned}
& \left(2 \hat{\theta}-p_{1-\alpha / 2}^{\alpha}, 2 \hat{\theta}-p^{\alpha} \alpha / 2\right) \\
= & \left(\hat{\theta}-q^{\alpha} 1-\alpha / 2, \hat{\theta}-q^{\alpha} \alpha / 2\right)
\end{aligned}
$$

(3) Studentized pivotel interds (2nd momiat

The god is to approximate the sampling dist $n$ ob

$$
\frac{\hat{\theta}-\theta}{\operatorname{se}(\hat{\theta})}
$$

Approximcted by:

$$
\frac{\hat{\theta}^{*}-\hat{\theta}}{\hat{\operatorname{se}}\left(\hat{\theta}^{*}\right)}
$$

Let $z_{\alpha}^{*}$ be the a perentile of

$$
\left\{\begin{aligned}
\frac{\hat{\theta}^{(1)}-\hat{\theta}}{\hat{\operatorname{se}}\left(\hat{\theta}^{(1)}\right)}, & \frac{\hat{\theta^{*(2)}-\hat{\theta}}}{\hat{\operatorname{se}}\left(\hat{\theta}^{*(2)}\right)}, \cdots, \\
& \frac{\hat{\theta}(\vec{B})-\hat{\theta}}{\hat{\operatorname{se}}\left(\hat{\theta}^{x(\beta)}\right)}
\end{aligned}\right.
$$

Example:

$$
\hat{\theta}=x
$$

$$
\begin{gathered}
\hat{\theta}^{*}=\bar{x}^{*} \\
\hat{x}\left(\hat{\theta}^{*}\right)=\frac{s^{*}}{\sqrt{n}} \\
\frac{\hat{\theta}^{*}-\hat{\theta}}{\hat{\operatorname{se}}\left(\hat{\theta}^{*}\right)}=\frac{\bar{x}^{*}-\bar{x}}{\operatorname{sen}^{*} / \sqrt{n}}
\end{gathered}
$$

The (1-ג) two-sided b.S. CI. is

$$
\begin{gathered}
\left(\hat{\theta}-z_{1-\alpha / 2}^{\alpha} \hat{\operatorname{se}}(\hat{\theta}), \hat{\theta}-z_{\alpha / 2}^{\alpha} \hat{s e}(\hat{\theta})\right) \\
\underset{\sim}{\operatorname{replaxing}} \operatorname{Normal}(0,1) \\
\end{gathered}
$$

perentiles
How do re get $\hat{s e}(\hat{\theta})$ in nonpurametric setting?

$$
\hat{S e c}()=\sqrt{\frac{1}{B} \sum_{b=1}^{B}\left(\hat{\theta}^{*(b)}-\frac{1}{B} \sum_{k=\hat{\theta}^{F}} \hat{\theta}^{(B)}\right)^{2}}
$$

But how to gat $\hat{\mathrm{se}}\left(\hat{\theta}^{*(b)}\right)$ ???

## Example: Bootstrap on Exponential Data

In the homework, you will be performing a bootstrap t-test of the mean and a bootstrap percentile CI of the median for the following Exponential $(\lambda)$ data:

```
> set.seed(1111)
> pop_mean <- 2
> X <- matrix(rexp(1000*30, rate=1/pop_mean), nrow=1000, ncol=30)
```

Let's construct a pivotal bootstrap CI of the median here instead.

```
> # population median 2*log(2)
> pop_med <- qexp(0.5, rate=1/pop_mean); pop_med
[1] 1.386294
> obs_meds <- apply(X, 1, median)
> plo\overline{t(density(obs_meds, adj=1.5), main=" "); abline(v=pop_med)}
```



Some embarrassingly inefficient code to calculate bootstrap medians.

```
> B <- 1000
> boot_meds <- matrix(0, nrow=1000, ncol=B)
>
> for(b in 1:B) {
```

```
+ idx <- sample(1:30, replace=TRUE)
+ boot_meds[,b] <- apply(X[,idx], 1, median)
+ }
```

Plot the bootstrap medians.

```
> plot(density(obs_meds, adj=1.5), main=" "); abline(v=pop_med)
```

> lines(density(as.vector (boot_meds[1:4,]), adj=1.5), col="red")
> lines(density(as.vector(boot_meds), adj=1.5), col="blue")


Compare sampling distribution of $\hat{\theta}-\theta$ to $\hat{\theta}^{*}-\hat{\theta}$.



Does a $95 \%$ bootstrap pivotal interval provide coverage?

```
> ci_lower <- apply(boot_meds, 1, quantile, probs=0.975)
> ci_upper <- apply(boot_meds, 1, quantile, probs=0.025)
>
> ci_lower <- 2*obs_meds - ci_lower
> ci_upper <- 2*obs_meds - ci_upper
>
> ci_lower[1]; ci_upper[1]
[1] 0.8958224
[1] 2.113859
>
> Cover &- (pop_med >= ci_lower) & (pop_med <= ci_upper)
mean(cover)
[1] 0.809
```

Let's check the bootstrap variances.

```
> sampling_var <- var(obs_meds)
> boot_var <- apply(boot_meds, 1, var)
> plot(density(boot_var, adj=1.5), main=" ")
> abline(v=sampling_var)
```



We repeated this simulation over a range of $n$ and $B$.


Goodness of Fit Methods
We don't know the dist'n of the data, but we'd like to test or ceases its fit to a known distribution
(1) Chi-square Go
(2) KS Test
(3) Method of moments

Chi-square Gof

$$
X_{1}, X_{2}, \ldots, X_{n} \stackrel{i j}{\sim}
$$

Test: $H_{0}: F \in\left\{F_{\partial}: \theta \in \theta_{1}\right\}$
$H_{1}$ : not $H_{0}$

Divide the support of $\left\{F_{\theta}: \theta \in \mathscr{H}\right\}$ in $K$ bins $I_{1}, I_{2}, \ldots, I_{K}$

Example: $\operatorname{Normel}\left(\mu, \mathrm{O}^{2}\right)$

$$
\left.\begin{array}{cccc}
(-\infty,-10), & (-10,-9) & \cdots & (9,10), \\
I_{1} & I_{2} & \cdots & I_{k-1}
\end{array} I_{K}\right)
$$

For $j=1,2, \ldots, k$ calculate

$$
q_{j}(\theta)=\int_{I_{j}} d F_{\theta}(x)
$$

Suppose observe data $x_{1}, x_{2}, \ldots, x_{n}$.
Let $n_{j}$ be the number of date prints in interval $I_{j}$.
Let $\tilde{\theta}$ be the value of $\theta$ that is the MLE of:

$$
\prod_{j=1}^{k} q_{j}(\theta)^{n_{j}}
$$

Form Go statistic:

$$
S(x)=\sum_{j=1}^{K} \frac{\left(n_{j}-n q_{j}(\bar{\theta})\right)^{2}}{n q_{j}(\bar{\theta})}
$$

$n q_{j}(\tilde{\theta})$ is the expected number of observations in $J_{\text {, }}$ with promoter values $\tilde{\theta}$
when $H_{0}$ is true, $S(x)$ has a $X_{V}^{2}$ where $v=K-\operatorname{dim}(\theta)$ $p$-value $=\operatorname{Pr}\left(s\left(x^{*}\right) \geq s(\underline{x})\right)^{-1}$ where $S\left(x^{\alpha}\right) \sim x^{2} v$.

## Goodness of Fit Example: Hardy-Weinberg

Suppose at your favorite SNP, we observe genotypes from 100 randomly sampled individuals as follows:


If we code these genotypes as $0,1,2$, testing for Hardy-Weinberg equilibrium is equivalent to testing whether $X_{1}, X_{2}, \ldots, X_{100} \stackrel{\text { iid }}{\sim} \operatorname{Binomial}(2, \theta)$ for some unknown allele frequency of T, $\theta$.
The parameter dimension is such that $d=1$. We will also set $k=3$, where each bin is a genotype. Therefore, we have $n_{1}=28, n_{2}=60$, and $n_{3}=12$. Also,

$$
q_{1}(\theta)=(1-\theta)^{2}, \quad q_{2}(\theta)=2 \theta(1-\theta), \quad q_{3}(\theta)=\theta^{2} .
$$

Forming the multinomial likelihood under these bin probabilities, we find $\tilde{\theta}=$ $\left(n_{2}+2 n_{3}\right) /(2 n)$. The degrees of freedom of the $\chi_{v}^{2}$ null distribution is $v=$ $k-d-1=3-1-1=1$.
Let's carry out the test in R.

```
> n <- 100
> nj <- c(28, 60, 12)
>
> # parameter estimates
> theta <- (nj[2] + 2*nj[3])/(2*n)
> qj <- c((1-theta)^2, 2*theta*(1-theta), theta^2)
>
> # gof statistic
> s <- sum((nj - n*qj)~
> # p-value
> 1-pchisq(s, df=1)
[1] 0.02059811
```

Kolmogoros - Smirnor Test
(1) Farm EDF $\hat{F}$
(2) Darametric Fo ( $\theta$ known)
(3) Foim statisti2:

$$
D(x)=\max _{y}\left|\hat{F}_{\underline{x}}(y)-F_{\theta}(y)\right|
$$

Null destribution of $D(x)$ is kensurn, based on Browniar bridge.

$$
H_{0}: F=F_{\theta} \text { vs. } H_{1}: F \neq F_{\theta}
$$

$$
\begin{aligned}
& \frac{\text { Two-sumple } R S \text {-test }}{X_{1}, \ldots, X_{n} \sim F_{X}} \\
& Y_{1}, \ldots, Y_{m} \sim F_{Y} \\
& H_{0}: F_{x}=F_{y} \text { us } H_{4}: F_{X} F F_{Y}
\end{aligned}
$$

$$
D(x, y)=\max _{z}\left|\hat{F}_{\underline{x}}(z)-\hat{F}_{y}(z)\right|
$$

When $H_{0}$ is true, one can calculate the distin of $P(x, y)$

## KS Test Example: Exponential vs Normal

ks.test (x, y, ...,

```
「alternative = c("two.sided", "less", "greater"),
    exact \(=\) NULL)
```

Two sample KS test.

```
> x <- rnorm(100, mean=1)
> y <- rexp(100, rate=1)
> wilcox.test(x, y)
    Wilcoxon rank sum test with continuity correction
data: x and y
W = 5021, p-value = 0.9601
alternative hypothesis: true location shift is not equal to 0
> ks.test(x, y)
```

Two-sample Kolmogorov-Smirnov test
data: $x$ and $y$
$\mathrm{D}=0.19, \mathrm{p}$-value $=0.0541$
alternative hypothesis: two-sided
> qqplot(x, y); abline(0,1)


C
One sample KS tests.
> ks.test ( $\mathrm{x}=\mathrm{x}, \mathrm{y}=$ "norm" $)$
One-sample Kolmogorov-Smirnov test
data: x
D $=0.41398, \mathrm{p}$-value $=2.554 \mathrm{e}-15$
alternative hypothesis: two-sided
$>$
> ks.test(x=x, y="pnorm", mean=1)
One-sample Kolmogorov-Smirnov test
data: x
D $=0.068035, \mathrm{p}$-value $=0.7436$
alternative hypothesis two sided
Standardize (mean center, sd scale) the observations before comparing to a $\operatorname{Normal}(0,1)$ distribution.
> ks.test $x=((x-\operatorname{mean}(x)) / s d(x)), y="$ norm" $)$

One-sample Kolmogorov-Smirnov test
data: $((x-\operatorname{mean}(x)) / \operatorname{sa}(x))$
$\mathrm{D}=0.05896$, p -value $=0.8778$
alternative hypothesis: two-sided
>
> ks.test(x=((y-mean(y))/sd(y)), y="pnorm")
One-sample Kolmogorov-Smirnov test
data: ( $(\mathrm{y}-\operatorname{mean}(\mathrm{y})) / \operatorname{set}(\mathrm{y}))$
$\mathrm{D}=0.14439, \mathrm{p}$-value $=0.03092$
alternative hypothesis: two-sided

