
Likelihood Ratio Tests
General Set-up
Most hypothesis testing procedures can be formulated so that a test statistic, S(x) is applied to the data
x = (x1, x2, . . . , xn)T so that:

1. S(x) ≥ 0
2. The larger S(x) is, the more significant the test is (i.e., the more evidence against the null in favor of

the alternative)
3. The p-value is p(x) = Pr(S(X∗) ≥ S(x)) where S(X∗) is distributed according to the null distribution

Significance Regions
A level α test is a signficance rule (i.e., a rule for calling a test statistically significant) that results in a false
positive rate (i.e., Type I error rate) of α. Under our set-up, significance regions take the form:

Γα = {x : S(x) ≥ c1−α} ,

where c1−α is the (1− α) percentile of S(X∗) so that Pr(S(X∗) ≥ c1−α) = α. We restrict 0 < α < 1.

Note that if α′ ≤ α then Γα′ ⊆ Γα.

P-values
A p-value can be defined in terms of significance regions:

p(x) = min {α : x ∈ Γα}

Example: Wald Test
Consider the hypothesis test, H0 : θ = θ0 vs H1 : θ 6= θ0. Let θ̂n(x) be the MLE of θ. We have

S(x) =

∣∣∣θ̂n(x)− θ0

∣∣∣
ŝe
(
θ̂n(x)

) ,

Γα =
{
x : S(x) ≥ |zα/2|

}
,

where zα/2 is the α/2 percentile of the Normal(0, 1) distribution.

Neyman-Pearson Lemma
Suppose we are testing H0 : θ = θ0 vs H1 : θ = θ1 where in practice θ0 and θ1 are known, fixed quantities.
The most powerful test has statistic and significance regions:

S(x) = f(x; θ1)
f(x; θ0) = L(θ1;x)

L(θ0;x)

Γα = {x : S(x) ≥ c1−α} ,

where c1−α is the (1− α) percentile of S(X∗) so that Prθ0(S(X∗) ≥ c1−α) = α.

Simple vs. Composite Hypotheses
A simple hypothesis is defined in terms of a single value, e.g.,

• H0 : µ = 0
• H0 : p = p0 where p0 is a placehold for a known, fixed number in practice
• H1 : λ = 5

A composite hypothesis is defined by multiple values, e.g.,

• H0 : µ ≤ 0 vs H1 : µ > 0
• H0 : p1 = p2, where p1 and p2 are two unknown parameters corresponding to two populations
• H1 : µ 6= 0

General Hypothesis Tests

Let X1, X2, . . . , Xn
iid∼ Fθ where θ ∈ Θ. Let Θ0,Θ1 ⊆ Θ so that Θ0 ∩ Θ1 = ∅ and Θ0 ∪ Θ1 = Θ. The

hypothesis test is:

H0 : θ ∈ Θ0 vs H1 : θ ∈ Θ1

If Θ0 or Θ1 contain more than one value then the corresponding hypothesis is composite.

Composite H0

The significance regions indexed by their level α are determined so that:

Γα = {x : S(x) ≥ c1−α} ,

where c1−α is such that
max
θ∈Θ0

Pr(S(X∗) ≥ c1−α) = α.

In this case,

p(x) = min {α : x ∈ Γα}
= max
θ∈Θ0

Prθ(S(X∗) ≥ S(x))

Generalized LRT
Let X1, X2, . . . , Xn

iid∼ Fθ where θ ∈ Θ and we are testing H0 : θ ∈ Θ0 vs H1 : θ ∈ Θ1.

The generalized LRT utilizes test statistic and significance regions:

λ(x) = maxθ∈Θ L(θ;x)
maxθ∈Θ0 L(θ;x) =

L
(
θ̂;x

)
L
(
θ̂0;x

)
Γα = {x : λ(x) ≥ c1−α}

Null Distribution of Gen. LRT
The null distribution of λ(x) under “certain regularity assumptions” can be shown to be such that, as n→∞,

2 log λ(x) D−→ χ2
v

where v = dim(Θ)− dim(Θ0).

The significance regions can be more easily written as Γα = {x : 2 log λ(x) ≥ c1−α} where c1−α is the 1− α
percentile of the χ2

v distribution.

Example: Poisson

Let X1, X2, . . . , Xn
iid∼ Poisson(θ) where θ > 0 and we are testing H0 : θ = θ0 vs H1 : θ 6= θ0. The

unconstrained MLE is θ̂ = x. The generalized LRT statistic

2 log λ(x) = 2 log e−nθ̂ θ̂
∑

xi

e−nθ0θ

∑
xi

0

= 2n
[
(θ0 − θ̂)− θ̂ log(θ0/θ̂)

]

which has an asymptotic χ2
1 null distribution.

Example: Normal

Let X1, X2, . . . , Xn
iid∼ Normal(µ, σ2) and we are testing H0 : µ = µ0 vs H1 : µ 6= µ0. The generalized LRT

can be applied for multidimensional parameter spaces Θ as well. The statistic, which has asymptotic null
distribution χ2

1, is

2 log λ(x) = 2 log
(
σ̂2

0
σ̂2

)n/2
where

σ̂2
0 =

∑n
i=1(xi − µ0)2

n
, σ̂2 =

∑n
i=1(xi − x)2

n
.

Bayesian Classification
Assumptions

Let (X1, X2, . . . , Xn)|θ iid∼ Fθ where θ ∈ Θ and θ ∼ Fτ . Let Θ0,Θ1 ⊆ Θ so that Θ0 ∩ Θ1 = ∅ and
Θ0 ∪Θ1 = Θ.

Given observed data x, we wish to classify whether θ ∈ Θ0 or θ ∈ Θ1.

This is the Bayesian analog of hypothesis testing.

Prior Probability on H
Let H be a rv such that H = 0 when θ ∈ Θ0 and H = 1 when θ ∈ Θ1.

From the prior distribution on θ, we can calculate

Pr(H = 0) =
∫
θ∈Θ0

f(θ)dθ

and Pr(H = 1) = 1− Pr(H = 0).

Posterior Probability
Using Bayes theorem, we can also calculate

Pr(H = 0|x) = f(x|H = 0) Pr(H = 0)
f(x)

=
∫
θ∈Θ0

f(x|θ)f(θ)dθ∫
θ∈Θ f(x|θ)f(θ)dθ

where note that Pr(H = 1|x) = 1− Pr(H = 0|x).

Loss Function
Let L

(
H̃,H

)
be such that

L
(
H̃ = 1, H = 0

)
= cI

L
(
H̃ = 0, H = 1

)
= cII

for some cI , cII > 0.

Bayes Risk
The Bayes risk, R

(
H̃,H

)
, is

E
[
L
(
θ, θ̃
)∣∣x] = cI Pr(H̃ = 1, H = 0) + cII Pr(H̃ = 0, H = 1)

= cI Pr(H̃ = 1|H = 0) Pr(H = 0)
+ cII Pr(H̃ = 0|H = 1) Pr(H = 1)

Notice how this balances what frequentists call Type I error and Type II error.

Bayes Rule
The estimate H̃ that minimizes R

(
H̃,H

)
is

H̃ = 1 when Pr(H = 1|x) ≥ cI
cI + cII

and H̃ = 0 otherwise.

Numerical Methods for Likelihood Functions
Why Numerical Methods for Likelihood
Challenges
Frequentist model:

X1, X2, . . . , Xn
iid∼ Fθ

Bayesian model:

X1, X2, . . . , Xn|θ
iid∼ Fθ and θ ∼ Fτ

Sometimes it’s not possible to find formulas for θ̂MLE, θ̂MAP, E[θ|x], or f(θ|x). We have to use numerical
methods instead.

Approaches
We will discuss the following numerical approaches to likelihood based inference:

• Expectation-maximization (EM) algorithm
• Variational inference
• Markov chain Monte Carlo (MCMC)

– Metropolis sampling
– Metropolis-Hastings sampling
– Gibbs sampling

Latent Variable Models
Definition
Latent variables (or hidden variables) are random variables that are present in the model, but unobserved.

We will denote latent variables by Z, and we will assume

(X1, Z1), (X2, Z2), . . . , (Xn, Zn) iid∼ Fθ.

A realized value of Z is z, Z = (Z1, Z2, . . . , Zn)T , etc.

The EM algorithm and variational inference involve latent variables.

Bayesian models are a special case of latent variable models: the unobserved random parameters are latent
variables.

Empirical Bayes Revisited
In the earlier EB example, we supposed that Xi|µi ∼ Normal(µi, 1) for i = 1, 2, . . . , n where these rv’s are
independent, and also that µi

iid∼ Normal(a, b2).

The unobserved parameters µ1, µ2, . . . , µn are latent variables. In this case, θ = (a, b2).

Normal Mixture Model
Suppose X1, X2, . . . , Xn

iid∼ Fθ where θ = (π1, . . . , πK , µ1, . . . , µK , σ
2
1 , . . . , σ

2
K) with pdf

f(x;θ) =
n∏
i=1

K∑
k=1

πk
1√

2πσ2
k

exp
{
− (xi − µk)2

2σ2
k

}
.

The MLEs of the unknown paramaters cannot be found analytically. This is a mixture common model to
work with in applications, so we need to be able to estimate the parameters.

There is a latent variable model that produces the same maerginal distribution and likelihood function. Let
Z1,Z2, . . . ,Zn

iid∼ MultinomialK(1,π) where π = (π1, . . . , πK). Note that Zik ∈ {0, 1} and
∑K
k=1 Zik = 1.

Let [Xi|Zik = 1] ∼ Normal(µk, σ2
k), where {Xi|Zi}ni=1 are jointly independent.

The joint pdf is

f(x, z;θ) =
n∏
i=1

K∏
k=1

[
πk

1√
2πσ2

k

exp
{
− (xi − µk)2

2σ2
k

}]zik

.

Note that

f(x, z;θ) =
n∏
i=1

f(xi, zi;θ).

It can be verified that f(x;θ) is the marginal distribution of this latent variable model:

f(xi;θ) =
∑
zi

f(xi, zi;θ) =
K∑
k=1

πk
1√

2πσ2
k

exp
{
− (xi − µk)2

2σ2
k

}
.

Bernoulli Mixture Model
Suppose X1, X2, . . . , Xn

iid∼ Fθ where θ = (π1, . . . , πK , p1, . . . , pK) with pdf

f(x;θ) =
n∏
i=1

K∑
k=1

πkp
xi

k (1− pk)1−xi .

As in the Normal mixture model, the MLEs of the unknown paramaters cannot be found analytically.

As before, there is a latent variable model that produces the same maerginal distribution and likelihood
function. Let Z1,Z2, . . . ,Zn

iid∼ MultinomialK(1,π) where π = (π1, . . . , πK). Note that Zik ∈ {0, 1} and∑K
k=1 Zik = 1. Let [Xi|Zik = 1] ∼ Bernoulli(pk), where {Xi|Zi}ni=1 are jointly independent.

The joint pdf is

f(x, z;θ) =
n∏
i=1

K∏
k=1

[
pxi

k (1− pk)1−xi
]zik

.

EM Algorithm
Rationale
For any likelihood function, L(θ;x) = f(x;θ), there is an abundance of optimization methods that can be
used to find the MLE or MAP. However:

• Optimization methods can be messy to implement
• There may be probabilistic structure that we can use to simplify the optimization process and also

provide theoretical guarantees on its convergence
• Optimization isn’t necessarily the only goal, but one may also be interested in point estimates of the

latent variable values

Requirement
The expectation-maximization (EM) algorithm allows us to calculate MLEs and MAPs when certain geometric
properties are satisfied in the probabilistic model.

In order for the EM algorithm to be a practical approach, then we should have a latent variable model
f(x, z;θ) that is used to do inference on f(x;θ) or f(θ|x).

Note: Sometimes (x, z) is called the complete data and x is called the observed data when we are using
the EM as a method for dealing with missing data.

The Algorithm
1. Choose initial value θ(0)

2. Calculate f(z|x,θ(t))

3. Calculate
Q(θ,θ(t)) = EZ|X=x

[
log f(x,Z;θ);θ(t)

]
4. Set

θ(t+1) = argmaxθQ(θ,θ(t))

5. Iterate until convergence and set θ̂ = θ(∞)

Q(θ,θ(t))
Continuous Z:

Q(θ,θ(t)) =
∫

log f(x, z;θ)f(z|x;θ(t))dz

Discrete Z:

Q(θ,θ(t)) =
∑
z

log f(x, z;θ)f(z|x;θ(t))

EM for MAP
If we wish to calculate the MAP we replace Q(θ,θ(t)) with

Q(θ,θ(t)) = EZ|X=x

[
log f(x,Z;θ);θ(t)

]
+ log f(θ)

where f(θ) is the prior distribution on θ.

EM Examples
Normal Mixture Model
Returning to the Normal mixture model introduced earlier, we first calculate

log f(x, z;θ) =
n∑
i=1

K∑
k=1

zik log πk + zik log φ(xi;µk, σ2
k)

where

φ(xi;µk, σ2
k) = 1√

2πσ2
k

exp
{
− (xi − µk)2

2σ2
k

}
.

In caculating

Q(θ,θ(t)) = EZ|X=x

[
log f(x,Z;θ);θ(t)

]
we only need to know EZ|X=x[Zik|x;θ], which turns out to be

EZ|X=x[Zik|x;θ] = πkφ(xi;µk, σ2
k)∑K

j=1 πjφ(xi;µj , σ2
j)
.

Note that we take

Q(θ,θ(t)) = EZ|X=x

[
log f(x,Z;θ);θ(t)

]
so the parameter in log f(x,Z;θ) is a free θ, but the paramaters used to take the conditional expectation of
Z are fixed at θ(t). Let’s define

ẑ
(t)
ik = E

[
zik|x;θ(t)

]
= π

(t)
k φ(xi;µ(t)

k , σ
2,(t)
k)∑K

j=1 π
(t)
j φ(xi;µ(t)

j , σ
2,(t)
j)

.

E-Step
We calculate

Q(θ,θ(t)) = EZ|X=x

[
log f(x,Z;θ);θ(t)

]
=

n∑
i=1

K∑
k=1

ẑ
(t)
ik log πk + ẑ

(t)
ik log φ(xi;µk, σ2

k)

At this point the parameters making up ẑ(t)
ik are fixed at θ(t).

M-Step
We now caculate θ(t+1) = argmaxθQ(θ,θ(t), which yields:

π
(t+1)
k =

∑n
i=1 ẑ

(t)
ik

n

µ
(t+1)
k =

∑n
i=1 ẑ

(t)
ik xi∑n

i=1 ẑ
(t)
ik

σ
2,(t+1)
k =

∑n
i=1 ẑ

(t)
ik

(
xi − µ(t+1)

k

)2

∑n
i=1 ẑ

(t)
ik

Note: You need to use a Lagrange multiplier to obtain {π(t+1)
k }Kk=1.

Caveat
If we assign one and only one data point to mixture component k, meaning µ(t)

k = xi and ẑ(t)
ik = 1 for some k

and i, then as σ2,(t)
k → 0, the likelihood goes to ∞.

Therefore, when implementing the EM algorithm for this particular Normal mixture model, we have to be
careful to bound all σ2,(t)

k away from zero and avoid this scenario.

Yeast Gene Expression
Measured ratios of the nuclear to cytoplasmic fluorescence for a protein-GFP construct that is hypothesized
as being nuclear in mitotic cells and largely cytoplasmic in mating cells.

http://math.stackexchange.com/questions/421105/maximum-likelihood-estimator-of-parameters-of-multinomial-distribution

0.0

0.2

0.4

0 5 10

gfp

de
ns

ity

truth

mating

mitotic

Initialize Values

> set.seed(508)
> B <- 100
> p <- rep(0,B)
> mu1 <- rep(0,B)
> mu2 <- rep(0,B)
> s1 <- rep(0,B)
> s2 <- rep(0,B)
> p[1] <- runif(1, min=0.1, max=0.9)
> mu.start <- sample(x, size=2, replace=FALSE)
> mu1[1] <- min(mu.start)
> mu2[1] <- max(mu.start)
> s1[1] <- var(sort(x)[1:60])
> s2[1] <- var(sort(x)[61:120])
> z <- rep(0,120)

Run EM Algorithm

> for(i in 2:B) {
+ z <- (p[i-1]*dnorm(x, mean=mu2[i-1], sd=sqrt(s2[i-1])))/
+ (p[i-1]*dnorm(x, mean=mu2[i-1], sd=sqrt(s2[i-1])) +
+ (1-p[i-1])*dnorm(x, mean=mu1[i-1], sd=sqrt(s1[i-1])))
+ mu1[i] <- sum((1-z)*x)/sum(1-z)
+ mu2[i] <- sum(z*x)/sum(z)

+ s1[i] <- sum((1-z)*(x-mu1[i])^2)/sum(1-z)
+ s2[i] <- sum(z*(x-mu2[i])^2)/sum(z)
+ p[i] <- sum(z)/length(z)
+ }
>
> tail(cbind(mu1, s1, mu2, s2, p), n=3)

mu1 s1 mu2 s2 p
[98,] 2.455325 0.3637967 6.7952 6.058291 0.5340015
[99,] 2.455325 0.3637967 6.7952 6.058291 0.5340015

[100,] 2.455325 0.3637967 6.7952 6.058291 0.5340015

Fitted Mixture Distribution

0.0

0.2

0.4

0.6

0 5 10

gfp

de
ns

ity

truth

mating

mitotic

Bernoulli Mixture Model
As an exercise, derive the EM algorithm of the Bernoilli mixture model introduced earlier.

Hint: Replace φ(xi;µk, σ2
k) with the appropriate Bernoilli pmf.

Other Applications of EM
• Dealing with missing data
• Multiple imputation of missing data
• Truncated observations
• Bayesian hyperparameter estimation
• Hidden Markov models

Theory of EM
Decomposition
Let q(z) be a probability distribution on the latent variables, z. Consider the following decomposition:

log f(x;θ) = L(q(z),θ) + KL(q(z)‖f(z|x;θ))

where

L(q(z),θ) =
∫
q(z) log

(
f(x, z;θ)
q(z)

)
dz

KL(q(z)‖f(z|x;θ)) = −
∫
q(z) log

(
f(z|x;θ)
q(z)

)
dz

Kullback-Leibler Divergence
The KL divergence provides an asymmetric measure of the difference between two probability distributions.

The KL divergence is such that KL(q‖f) ≥ 0 where KL(q‖f) = 0 if and only if q = f . This property is known
as Gibbs inequality.

Lower Bound
Note that L(q(z),θ) provides a lower bound on the likelihood function:

log f(x;θ) ≥ L(q(z),θ)

If we set q(z) = f(z|x;θ(t)), then for a fixed θ(t) and as a function of θ,

L(q(z),θ) ∝
∫
f(z|x;θ(t)) log f(x, z;θ)dz

= Q(θ,θ(t))

EM Increases Likelihood
Since θ(t+1) = argmaxθQ(θ,θ(t)), it follows that

Q(θ(t+1),θ(t)) ≥ Q(θ(t),θ(t)).

Also, by the properties of KL divergence stated above, we have

KL(f(z|x;θ(t+1))‖f(z|x;θ(t))) ≥ KL(f(z|x;θ(t))‖f(z|x;θ(t))).

Putting these together we have

log f(x;θ(t+1)) ≥ log f(x;θ(t)).

Variational Inference
Rationale
Performing the EM algorithm required us to be able to compute f(z|x;θ) and also optimize Q(θ,θ(t)).
Sometimes this is not possible. Variational inference takes advantage of the decomposition

log f(x;θ) = L(q(z),θ) + KL(q(z)‖f(z|x;θ))

and instead considers other forms of q(z) to identify a more tractable optimization.

Optimization Goal
Since

log f(x;θ) = L(q(z),θ) + KL(q(z)‖f(z|x;θ))

it follows that the closer q(z) is to f(z|x;θ), the term L(q(z),θ) grows larger while KL(q(z)‖f(z|x;θ))
becomes smaller. The goal is typically to identify a restricted form of q(z) that maximizes L(q(z),θ), which
serves as an approximation to the posterior distribution f(z|x;θ).

Mean Field Approximation
A mean field approximation implies we restrict q(z) to be

q(z) =
K∏
k=1

qk(zk)

for some partition z = (z1, z2, . . . ,zK). This partition is very context specific and is usually driven by the
original model and what is tractable.

Optimal qk(zk)
Under the above restriction, it can be shown that the {qk(zk)} that maximize L(q(z),θ) have the form:

qk(zk) ∝ exp

∫

log f(x, z;θ)
∏
j 6=k

qj(zj)dzj

 .

These pdf’s or pmf’s can be calculated iteratively by cycling over k = 1, 2, . . . ,K after intializing them
appropriately. Note that convergence is guaranteed.

Remarks
• If θ is also random, then it can be included in z.

• The estimated f̂(z|x) is typically concentrated around the high density region of the true f(z|x), so it
is useful for calculations such as the MAP, but it is not guaranteed to be a good overall estimate of
f(z|x).

• Variational inference is typically faster than MCMC (covered next).

• Given this is an optimization procedure, care can be taken to speed up convergence and avoid unintended
local maxima.

Markov Chain Monte Carlo
Motivation
When performing Bayesian inferece, it is often (but not always) possible to calculate

f(θ|x) ∝ L(θ;x)f(θ)

but it is typically much more difficult to calculate

f(θ|x) = L(θ;x)f(θ)
f(x) .

Markov chain Monte Carlo is a method for simulating data approximately from f(θ|x) with knowledge of
only L(θ;x)f(θ).

Note
MCMC can be used to approximately simulate data from any distribution that is only proportionally
characterized, but it is probably most well know for doing so in the context of Bayesian infererence.

We will explain MCMC in the context of Bayesian inference.

Big Picture
We draw a Markov chain of θ values so that, in some asymptotic sense, these are equivalent to iid draws
from f(θ|x).

The draws are done competitively so that the next draw of a realization of θ depends on the current value.

The Markov chain is set up so that it only depends on L(θ;x)f(θ).

A lot of practical decisions need to be made by the user, so utilize MCMC carefully.

Metropolis-Hastings Algorithm
1. Initialize θ(0)

2. Generate θ∗ ∼ q(θ|θ(b)) for some pdf or pmf q(·|·)

3. With probablity

A(θ∗,θ(b)) = min
(

1, L(θ∗;x)f(θ∗)q(θ(b)|θ∗)
L(θ(b);x)f(θ(b))q(θ∗|θ(b))

)
set θ(b+1) = θ∗. Otherise, set θ(b+1) = θ(b)

4. Continue for b = 1, 2, . . . , B iterations and carefully select which θ(b) are utilized to approximate iid
observations from f(θ|x)

Metropolis Algorithm
The Metropolis algorithm restricts q(·, ·) to be symmetric so that q(θ(b)|θ∗) = q(θ∗|θ(b)) and

A(θ∗,θ(b)) = min
(

1, L(θ∗;x)f(θ∗)
L(θ(b);x)f(θ(b))

)
.

Utilizing MCMC Output
Two common uses of the output from MCMC are as follows:

1. E[f(θ)|x] is approximated by

Ê[f(θ)|x] = 1
B

B∑
b=1

f
(
θ(b)

)
.

2. Some subsequence θ(b1),θ(b2), . . . ,θ(bm) from
{
θ(b)

}B
b=1

is utilized as an empirical approximation to iid
draws from f(θ|x).

Remarks
• The random draw θ∗ ∼ q(θ|θ(b)) perturbs the current value θ(b) to the next value θ(b+1). It is often a

Normal distribution for continuous θ.
• Choosing the variance of q(θ|θ(b)) is important as it requires enough variance for the theory to be

applicable within a reasonable number of computations, but it cannot be so large that new values of
θ(b+1) are rarely generated.

• A(θ∗,θ(b)) is called the acceptance probability.
• The algorithm must be run for a certain number of iterations (“burn in”) before observed θ(b) can be

utilized.
• The generated θ(b) are typically “thinned” (only sampled every so often) to reduce Markov dependence.

Full Conditionals
Suppose that θ = (θ1, θ2, . . . , θK). Define the subset vector as θa:b = (θa, θa+1, . . . , θb−1, θb) for any 1 ≤ a ≤
b ≤ K.

The full conditional of θk is

Pr(θk|θ1:k−1,θk+1:K ,x)

Gibbs Sampling
Gibbs sampling a special type of Metropolis-Hasting MCMC. The algorithm samples one coordinate of θ at a
time.

1. Initialize θ(0).
2. Sample:
θ

(b+1)
1 ∼ Pr(θ1|θ(b)

2:K ,x)
θ

(b+1)
2 ∼ Pr(θ2|θ(b+1)

1 ,θ
(b)
3:K ,x)

θ
(b+1)
3 ∼ Pr(θ3|θ(b+1)

1:2 ,θ
(b)
3:K ,x)

...
θ

(b+1)
K ∼ Pr(θK |θ(b+1)

1:K−1,x)

3. Continue for b = 1, 2, . . . , B iterations.

Gibbs and MH
As an exercise, show that Gibbs sampling is a special case of the Metropolis-Hastings algorithm where
A(θ∗,θ(b)) = 1.

Latent Variables
Note that MCMC is often used to calculate a posterior distribution on latent variables.

This makes sense because unobserved random paramaters are a special type of latent variable.

Theory
The goal of MCMC is to construct a Markov chain that converges to a stationary distribution that is equivalent
to the target probability distribution.

Under reasonably general assumptions, one can show that the Metropolis-Hastings algorithm produces a
Markov chain that is homogeneous and achieves detailed balance, which implies the Markov chain is ergodic
so that θ(B) converges in distribution to f(θ|x) as B →∞ and that

Ê[f(θ)|x] = 1
B

B∑
b=1

f
(
θ(b)

)
B→∞−→ E[f(θ)|x].

Software
Stan is probably the currently most popular software for doing Bayesian computation, including MCMC and
variational inference.

There are also popular R packages, such as MCMCpack.

MCMC Example
Single Nucleotide Polymorphisms
PSD Admixture Model
PSD model proposed in Pritchard, Stephens, Donnelly (2000) Genetics.

Gibbs Sampling Approach
The Bayesian Gibbs sampling approach to inferring the PSD model touches on many important ideas, such
as conjugate priors and mixture models.

We will focus on a version of this model for diploid SNPs.

The Data
X, a L × N matrix consisting of the genotypes, coded as 0, 1, 2. Each row is a SNP, each column is an
individual.

In order for this model to work, the data needs to be broken down into “phased” genotypes. For the 0 and 2
cases, it’s obvious how to do this, and for the 1 case, it’ll suffice for this model to randomly assign the alleles
to chromosomes. We will explore phasing more on HW4.

Thus, we wind up with two {0, 1} binary matrices XA and XB , both L×N . We will refer to allele A and
allele B. Note X = XA +XB .

Model Components
• K, the number of populations that we model the genotypes as admixtures of. This is chosen before

inference.

http://mc-stan.org
https://cran.r-project.org/web/packages/MCMCpack/index.html
http://www.genetics.org/content/155/2/945.long

Figure 1: SNPs

• Q, a N ×K matrix, the admixture proportions, values are in the interval [0, 1] and rows are constrained
to sum to 1.

• P , a L×K matrix, the allele frequencies for each population, values are in the interval [0, 1].
• ZA and ZB , two L×N matrices that tell us which population the respective allele is from. Elements

consist of the integers between 1 and K. This is a hidden variable.

The Model
• Each allele (elements ofXA andXB) is a Bernoulli random variable, with success probability determined

by which population that allele is assigned to (i.e., depends on ZA, ZB , and P).
• We put a uniform Beta prior, i.e., Beta(1, 1), on each element of P .
• We put a uniform Dirichlet prior, i.e., Dirichlet(1, . . . , 1), on each row of Q.
• ZA and ZB are K-class Multinomial draws where the probability of drawing each class is determined

by each row of Q.

Conditional Independence
The key observation is to understand which parts of the model are dependent on each other in the data
generating process.

• The data XA and XB depends directly on ZA, ZB , and P (not Q!).
• The latent variable ZA and ZB depend only on Q and they’re conditionally independent given Q.
• Q and P depend only on their priors.

Pr(XA,XB ,ZA,ZB ,P ,Q) =
Pr(XA,XB |ZA,ZB ,P) Pr(ZA|Q) Pr(ZB |Q) Pr(P) Pr(Q)

Figure 2: PSD

The Posterior
We desire to compute the posterior distribution Pr(P ,Q,ZA,ZB |XA,XB). Gibbs sampling tells us if we
can construct conditional distributions for each random variable in our model, then iteratively sampling
and updating our model parameters will result in a stationary distribution that is the same as the posterior
distribution.

Gibbs sampling is an extremely powerful approach for this model because we can utilize conjugate priors as
well as the independence of various parameters in the model to compute these conditional distributions.

Full Conditional for Q
Note that ZA and ZB are the only parts of this model that directly depend on Q.

Pr(Qn|Q−n,ZA,ZB ,P ,XA,XB)
= Pr(Qn|ZA,ZB)
∝Pr(ZAn, ZBn|Qn) Pr(Qn)
= Pr(ZAn|Qn) Pr(ZBn|Qn) Pr(Qn)

∝

(
L∏
`=1

K∏
k=1

Q
1(ZAn`=k)+1(ZBn`=k)
nk

)

=
K∏
k=1

QSnk

nk

where Snk is simply the count of the number of alleles for individual n that got assigned to population k.

Thus, Qn|ZA,ZB ∼ Dirichlet(Sj1 + 1, . . . , Sjk + 1),.

We could have guessed that this distribution is Dirichlet given that ZA and ZB are multinomial! Let’s use
conjugacy to help us in the future.

Full Conditional for P

Pr(P`|P−`,ZA,ZB ,Q,XA,XB)
∝Pr(XA`,XB`|P`,ZA`,ZB`) Pr(P`)

We know Pr(XA`,XB`|P`,ZA`,ZB`) will be Bernoulli and Pr(P`) will be beta, so the full conditional will
be beta as well. In fact, the prior is uniform so it vanishes from the RHS.

Thus, all we have to worry about is the Bernoulli portion Pr(XA`,XB`|P`,ZA`,ZB`). Here, we observe that
if the ZA and ZB are “known”, then we known which value of P` to plug into our Bernoulli for XA and XB .
Following the Week 6 lectures, we find that the full conditional for P is:

P`k|ZA,ZB ,XA,XB ∼ Beta(1 + T`k0, 1 + T`k1)

where T`k0 is the total number of 0 alleles at SNP ` for population k, and T`k1 is the analogous quantity for
the 1 allele.

Full Conditional ZA & ZB

We’ll save some math by first noting that alleles A and B are independent of each other, so we can write this
for only ZA without losing any information. Also, all elements of ZA are independent of each other. Further,
note that each element of ZA is a single multinomial draw, so we are working with a discrete random variable.

Pr(ZA`n = k|XA,Q,P)
= Pr(ZA`n = k|XA`n, Qn, P`)
∝Pr(XA`n|ZA`n = k,Qn, P`) Pr(ZA`n = k|Qn, P`)

We can look at the two factors. First:

Pr(ZA`n = k|Qn, P`) = Pr(ZA`n = k|Qn) = Qnk

Then:

Pr(XA`n|ZA`n = k,Qn, P`) = P`k

Thus, we arrive at the formula:

Pr(ZA`n = k|XA,Q,P) ∝ P`kQnk

Gibbs Sampling Updates
It’s neat that we wind up just iteratively counting the various discrete random variables along different
dimensions.

Qn|ZA,ZB ∼ Dirichlet(Sj1 + 1, . . . , Sjk + 1)
P`k|ZA,ZB ,XA,XB ∼ Beta(1 + T`k0, 1 + T`k1)

ZA`n|XA,Q,P ∼ Multinomial
(
P` ∗Qn
P` ·Qn

)
where ∗ means element-wise vector multiplication.

Implementation
The Markov chain property means that we can’t use vectorization forward in time, so R is not the best way
to implement this algorithm.

That being said, we can vectorize the pieces that we can and demonstrate what happens.

Matrix-wise rdirichlet Function
Drawing from a Dirichlet is easy and vectorizable because it consists of normalizing independent gamma
draws.
> rdirichlet <- function(alpha) {
+ m <- nrow(alpha)
+ n <- ncol(alpha)
+ x <- matrix(rgamma(m * n, alpha), ncol = n)
+ x/rowSums(x)
+ }

Inspect Data

> dim(Xa)
[1] 400 24
> X[1:3,1:3]

NA18516 NA19138 NA19137
rs2051075 0 1 2
rs765546 2 2 0
rs10019399 2 2 2
> Xa[1:3,1:3]

NA18516 NA19138 NA19137
rs2051075 0 0 1
rs765546 1 1 0
rs10019399 1 1 1

Model Parameters

> L <- nrow(Xa)
> N <- ncol(Xa)
>
> K <- 3
>
> Za <- matrix(sample(1:K, L*N, replace=TRUE), L, N)
> Zb <- matrix(sample(1:K, L*N, replace=TRUE), L, N)
> P <- matrix(0, L, K)
> Q <- matrix(0, N, K)

Update P

> update_P <- function() {
+ Na_0 <- Za * (Xa==0)
+ Na_1 <- Za * (Xa==1)
+ Nb_0 <- Zb * (Xb==0)
+ Nb_1 <- Zb * (Xb==1)
+ for(k in 1:K) {
+ N0 <- rowSums(Na_0==k)+rowSums(Nb_0==k)
+ N1 <- rowSums(Na_1==k)+rowSums(Nb_1==k)
+ P[,k] <- rdirichlet(1+cbind(N1, N0))[,1]
+ }
+ P
+ }

Update Q

> update_Q <- function() {
+ M_POP0 <- apply(Za, 2, function(x) {tabulate(x, nbins=K)})
+ M_POP1 <- apply(Zb, 2, function(x) {tabulate(x, nbins=K)})
+
+ rdirichlet(t(1+M_POP0+M_POP1))
+ }

Update (Each) Z

> update_Z <- function(X) {
+ Z <- matrix(0, nrow(X), ncol(X))
+ for(n in 1:N) {
+ PZ0 <- t(t((1-P)) * Q[n,])
+ PZ1 <- t(t(P) * Q[n,])
+ PZ <- X[,n]*PZ1 + (1-X[,n])*PZ0
+ Z[,n] <- apply(PZ, 1, function(p){sample(1:K, 1, prob=p)})
+ }
+ Z
+ }

Model Log-likelihood Function

> model_ll <- function() {
+ AFa <- t(sapply(1:L, function(i){P[i,][Za[i,]]}))
+ AFb <- t(sapply(1:L, function(i){P[i,][Zb[i,]]}))
+ # hint, hint, HW3
+ sum(dbinom(Xa, 1, AFa, log=TRUE)) +
+ sum(dbinom(Xb, 1, AFb, log=TRUE))
+ }

MCMC Configuration

> MAX_IT <- 20000
> BURNIN <- 5000
> THIN <- 20
>
> QSUM <- matrix(0, N, K)
>
> START <- 200
> TAIL <- 500
> LL_start <- rep(0, START)
> LL_end <- rep(0, TAIL)

Run Sampler

> set.seed(1234)
>
> for(it in 1:MAX_IT) {
+ P <- update_P()
+ Q <- update_Q()
+ Za <- update_Z(Xa)
+ Zb <- update_Z(Xb)
+
+ if(it > BURNIN && it %% THIN == 0) {QSUM <- QSUM+Q}
+ if(it <= START) {LL_start[it] <- model_ll()}
+ if(it > MAX_IT-TAIL) {LL_end[it-(MAX_IT-TAIL)] <- model_ll()}
+ }
>
> Q_MEAN <- QSUM/((MAX_IT-BURNIN)/THIN)

Posterior Mean of Q

Plot Log-likelihood Steps
Note both the needed burn-in and thinning.

What Happens for K=4?

> K <- 4
> Za <- matrix(sample(1:K, L*N, replace=TRUE), L, N)
> Zb <- matrix(sample(1:K, L*N, replace=TRUE), L, N)
> P <- matrix(0, L, K)
> Q <- matrix(0, N, K)
> QSUM <- matrix(0, N, K)

Run Sampler Again

> for(it in 1:MAX_IT) {
+ P <- update_P()
+ Q <- update_Q()
+ Za <- update_Z(Xa)
+ Zb <- update_Z(Xb)
+
+ if(it > BURNIN && it %% THIN == 0) {
+ QSUM <- QSUM+Q
+ }
+ }

>
> Q_MEAN <- QSUM/((MAX_IT-BURNIN)/THIN)

Posterior Mean of Q

	Likelihood Ratio Tests
	General Set-up
	Significance Regions
	P-values
	Example: Wald Test
	Neyman-Pearson Lemma
	Simple vs. Composite Hypotheses
	General Hypothesis Tests
	Composite H_0
	Generalized LRT
	Null Distribution of Gen. LRT
	Example: Poisson
	Example: Normal

	Bayesian Classification
	Assumptions
	Prior Probability on H
	Posterior Probability
	Loss Function
	Bayes Risk
	Bayes Rule

	Numerical Methods for Likelihood Functions
	Why Numerical Methods for Likelihood
	Challenges
	Approaches

	Latent Variable Models
	Definition
	Empirical Bayes Revisited
	Normal Mixture Model
	Bernoulli Mixture Model

	EM Algorithm
	Rationale
	Requirement
	The Algorithm
	Q(\bt, \bt^{(t)})
	EM for MAP

	EM Examples
	Normal Mixture Model
	E-Step
	M-Step
	Caveat
	Yeast Gene Expression
	Initialize Values
	Run EM Algorithm
	Fitted Mixture Distribution
	Bernoulli Mixture Model
	Other Applications of EM

	Theory of EM
	Decomposition
	Kullback-Leibler Divergence
	Lower Bound
	EM Increases Likelihood

	Variational Inference
	Rationale
	Optimization Goal
	Mean Field Approximation
	Optimal q_k(\bz_k)
	Remarks

	Markov Chain Monte Carlo
	Motivation
	Note
	Big Picture
	Metropolis-Hastings Algorithm
	Metropolis Algorithm
	Utilizing MCMC Output
	Remarks
	Full Conditionals
	Gibbs Sampling
	Gibbs and MH
	Latent Variables
	Theory
	Software

	MCMC Example
	Single Nucleotide Polymorphisms
	PSD Admixture Model
	Gibbs Sampling Approach
	The Data
	Model Components
	The Model
	Conditional Independence
	The Posterior
	Full Conditional for \boldsymbol{Q}
	Full Conditional for \boldsymbol{P}
	Full Conditional \boldsymbol{Z}_A & \boldsymbol{Z}_B
	Gibbs Sampling Updates
	Implementation
	Matrix-wise rdirichlet Function
	Inspect Data
	Model Parameters
	Update \boldsymbol{P}
	Update \boldsymbol{Q}
	Update (Each) \boldsymbol{Z}
	Model Log-likelihood Function
	MCMC Configuration
	Run Sampler
	Posterior Mean of \boldsymbol{Q}
	Plot Log-likelihood Steps
	What Happens for K=4?
	Run Sampler Again
	Posterior Mean of \boldsymbol{Q}

