This Week's Topic: Frequentist Statistical Inference

Central Dogma of (Frequentist) Statistical Inference

Observingldate according to a collecting! probabilistic model Couerations

Example: Simple Random Sample Units are uniformly and independently sampled from a pspatation:

- Politico survey (survey samples)
- Flipping a coin n times

Example: Randomized controlled study Units are randomly sampled and teen sondomized to taro or more treatment gongs

- Clinical trial

Example: Fair Coin?

Suppose I claim that a specific coin is fair, i.e., that it lands on heads or tails with equal probability.
I flip it 20 times and it lands on heads 16 times.

1. My data is $x=16$ heads out of $n=20$ flips.
2. My data generation model is $X \sim \operatorname{Binomial}(20, p)$.
3. I form the statistic $\hat{p}=16 / 20$ as an estimate of p.

Let's simulate 10,000 times what my estimate would look like if $p=0.5$ and I repeated the 20 coin flips over and over.

```
> x <- replicate(n=1e4, expr=rbinom(1, size=20, prob=0.5))
```

> sim_p_hat <- x/20
> my_p_hat <- 16/20
What can I do with this information?


```
> sum(abs(sim_p_hat-0.5) >= abs(my_p_hat-0.5))/1e4
```

[1] 0.0083

Parameter a number that describes a population.

- Usually fixed
- We don't know its value
- appears in the probability mosel of how we collected date
statistic a number calculated from sample of data

A statistic is used to estimate a parameter
Sampling distribution of a statistic (s) the probabitith dist'n of the statistic under repeated realizations of the data from the assumed data generating probabity dist in

Gods of Inference
(1) Form estimates of the parameters
(2) Quantify uncertainty about the estimates
(3) Test hypotheses on the parameters

Let's go through these goals in simple scenario:

Data generating process is

$$
X_{1}, X_{2}, \ldots, X_{n} \stackrel{i, s}{\sim} \operatorname{Narmal}\left(\mu, \sigma^{2}\right)
$$

μ is untenown
6^{2} is known
(1) $\sum_{i=1}^{n} X_{i} \sim \operatorname{Normal}\left(n \mu, n 6^{2}\right)$
(2) If Z-Nosonal then $a+b z \sim$ Nornal \Longrightarrow

$$
\bar{x}=\frac{\sum_{i=1}^{n} x_{i}}{n} \sim \operatorname{Nosmd}\left(\mu, \sigma^{2} / n\right)
$$

Exerise: verify this
(3) $\frac{\bar{x}-\mu}{\sqrt{62 / n}} \sim \operatorname{Normal}(0,1)$

Point estimate of μ :

$$
\begin{aligned}
& \hat{\mu}=\bar{X} \\
& \frac{\hat{\mu} \sim \operatorname{Narad}\left(\mu, b^{2} / n\right)}{\text { sampling distribstion }} \\
& \frac{\hat{\mu}-\mu}{\sqrt{\sigma^{2} / n}} \sim \operatorname{Nainl}(0,1)
\end{aligned}
$$

Pivotal Statistic a statistic whose sampling distribution does not depend on any untenown parameters

$$
\frac{\hat{\mu}-\mu}{\sqrt{\sigma^{2} / n}}
$$

is pirotal

Confidence Intern
Interval of the form

$$
\begin{aligned}
& \left(\hat{\mu}-C_{l}, \hat{\mu}+C_{n}\right) \\
& C_{l}, C_{n} \geqslant 0
\end{aligned}
$$

where

$$
\operatorname{Pr}\left(\mu-C_{l} \leq \hat{\mu} \leq \mu+C_{n}\right)
$$

forms the "level" or coverage probability of the raterval

If $z \sim \operatorname{Normal}(0,1)$ then

$$
\begin{aligned}
& \operatorname{Pr}(-1.96 \leq z \leq 1.96)=0.95 \\
& \text { Let } z=\frac{\hat{\mu}-\mu}{\sqrt{0^{2} / n}} \\
& \operatorname{Pr}\left(-1.96 \leq \frac{\mu-\mu}{\sqrt{6^{2} / n}} \leq 1.96\right)=0.95 \\
& =\operatorname{Pr}\left(-1.96 \sqrt{6^{2} / n} \leq \hat{\mu}-\mu \leq 1.96 \sqrt{6^{2} / n}\right) \\
& =\operatorname{Pr}\left(-1.96 \sqrt{6^{2} / n} \leq \mu-\hat{\mu} \leq 1.96 \sqrt{6^{2} / n}\right) \\
& =\operatorname{Pr}\left(\hat{\mu}-1.96 \sqrt{6^{2} / n} \leq \mu \leq \hat{\mu}+1.96 \sqrt{6^{2}} / n\right) \\
& \Rightarrow C_{l}=C_{n}=1.96 \sqrt{b^{2} / n} \text { gives }
\end{aligned}
$$ me a 95% confidence interval

Confidence Interval Simulation

```
>mu <- 5
> n <- 20
> x <- replicate(10000, rnorm(n=n, mean=mu)) # 10000 studies
> m <- apply(x, 2, mean) # the estimate for each study
> ci <- cbind(m - 1.96/sqrt(n), m + 1.96/sqrt(n))
> head(ci)
rr,1] 
[2,] 4.599996 5.476534
[3,] 4.472930 5.349468
[4,] 4.778946 5.655485
[5,] 4.778710 5.655248
[6,] 4.425023 5.301561
> cover <- (mu > ci[,1]) & (mu < ci[,2])
> mean(cover)
[1] 0.9512
```


When $\alpha=0.05$ then

$$
z_{\alpha / 2}=-1.96, \quad z_{1-\alpha / 2}=1.96
$$

$(1-\alpha)$-level upper CI: $1-\alpha$

$$
\left(-\infty, \hat{\mu}+\left|z_{\alpha}\right| \frac{6}{\sqrt{n}}\right)
$$ percentile

($1-\alpha$)-level lower CI:

$$
\left(\hat{\mu}-\left|z_{2}\right| \frac{6}{\sqrt{n}}, \infty\right)
$$

α percentile
Hypothers Testing
coin example I did a hypothesis test of $p=0.5 \mathrm{rs}$. $p \neq 0.5$
hypothesis test / significance test is a formal procedure for
(comparing observed date with a hypothesis whose truth we wont to assess
the results of a test are expressed in terms of how well the data ard one of the hypotheses agree
Null hypoth es $B_{3}\left(H_{0}\right)$ is the statement being tested Alternative hypothesis $(H$,$) is the$ of the null, and it's the "interesting" state

Ho and H, are defined in terms of parameter values (or probabilistre property)

Examples:
Tou ided $H_{0}: \mu=5 \quad H_{1}: \mu \neq 5$

$$
o^{\mu}-\text { sided } \begin{cases}H_{0}: \mu \leq 5 & H_{1}: \mu>5 \\ H_{0}: \mu \geqslant 5 & H_{1}: \mu<5\end{cases}
$$

test statitiz a statistic designed to quartify evidence agoinst the H_{0} in faver of H_{1}

$$
\begin{aligned}
& H_{0}: \mu=5 \quad H_{1}: \mu \neq 5 \\
& |z|=\left|\frac{\bar{x}-5}{\sqrt{0^{2} / n}}\right| \\
& \hat{\mu}=\bar{x} \quad \frac{\hat{\mu}-\mu}{\sqrt{0^{2} / n}} \sim N(0,1)
\end{aligned}
$$

If $H_{0}: \mu=5$ is true then

$$
Z=\frac{\bar{x}-5}{\sqrt{6^{2} / n}} \sim \operatorname{Normel}(0,1)
$$

is pivotal
Collect my n data points and calculate my observed statistic:

$$
z=\frac{x-5}{\sqrt{02 / n}}
$$

Recall larger $|z|$ is, the more evidence against H_{0} in farer of H_{1}.
p-value is the probability of observing a test statistic "as or more extreme" than the observed statistic under the sampling dist'n of the statistic when H_{0} is true

Let $Z^{*} \sim \operatorname{Nornd}(0,1)$

$$
p \text {-value }=\operatorname{pr}\left(\left|z^{p}\right| \geqslant|z|\right)
$$

$$
q
$$

$$
\uparrow
$$ therevial observed

Make a decision based on the p-value. Smaller it is, the more evidence against H_{0} in furor of H, there is.

Let's san we call a test "significant" if p-value $\leq \alpha$.

Type I error or false positive:
Call test significant, i.e., reject H_{0} in favor of H_{1} when H_{0} is actuolly true Type wIemar or false negative

Fail to call test signifrent then H_{1} is actudly tare
"Rate" is the probability of these errors under a decision rale.
If p-value $\leq \alpha$ is the pule then false positive rats is α
under two-sided test, is $\leq \alpha$ under a one-sibed test

Exerize: convince yourself
P^{2} be the p-value under repeated studies. Sampling distin of P^{*} when H_{0} is the is Uniform $(0,1)$ for a two-sided test.

Show $\operatorname{Pr}\left(P^{*} \leq t ;\right.$ Hotrue $)=t$
for $t \in[0,1]$.

$$
\text { Pr}\left(p * \leq t ; H_{0} \text { true }\right) \leq t
$$

for one-sided

Power: Probability of a significant test when H_{1} is true Power $=1$ - false negative ate

Power is calculate under a range of alterative parameter values

$$
\begin{aligned}
& x: \Omega \longrightarrow \mathbb{R} \\
& (\Omega, \mathcal{F}, p) \\
& R=\{X(w): w \in \Omega\}
\end{aligned}
$$

R discrete or continuous $f(x)$ p.m.f. or p.d.f.

$$
\sum_{x \in \mathbb{R}} f(x)=1 \text { or } \int_{x \in Q} f(x) d x=1
$$

Joint Pistributions
Distribution of two or more randm variables
Bivariate joint dist'n:

$$
\text { ris } X, Y
$$

have puf or pdf $f(x, y)$
disurete

$$
\begin{aligned}
f(x, y) & =\operatorname{Pr}(X=x, Y=y) \\
& =\operatorname{Pr}(\{\omega: X(\omega)=x\} \cap\{\omega: Y(\omega)=y\})
\end{aligned}
$$

analoguns for pdf's

$$
\begin{aligned}
& A_{x} \subseteq \mathbb{R}, A_{y} \leq \mathbb{R} \text { then } \\
& \operatorname{Pr}\left(X \in A_{x}, Y \in A_{y} \backslash\right. \text { is: } \\
& \sum_{x \in A_{x} y \in A_{y}} f(x, y) \quad \text { discrete } \\
& \int_{x \in A_{x}} \int_{y \in A_{y}} f(x, y) d x d y \quad \text { continuss }
\end{aligned}
$$

Bivariate cdf:

$$
F(a, b)=P_{r}(X \leq a, Y \leq b)
$$

Margind Distin

$$
\begin{aligned}
& f(x)=\sum_{y \in \mathbb{R}_{y}} f(x, y) \\
& f(x)=\int_{y \in R_{y}} f(x, y) d y
\end{aligned}
$$

Independence of X and Y

$$
f(x, y)=f(x) f(y)
$$

Conditiond drstins

$$
\begin{aligned}
& X \mid Y=y \\
& f(x \mid y)=\frac{f(x, y)}{f(y)}
\end{aligned}
$$

$$
\begin{gathered}
\sum_{x \in R_{x}} f(x \mid y)=1 \\
\int_{x \in R_{x}} f(x \mid y) d x=1 \\
\\
=\int_{x \in R_{x}} x^{k} f(x \mid y) d x
\end{gathered}
$$

Genera Joint Distrains

$$
\begin{aligned}
& x_{1}, x_{2}, \ldots, x_{n} \\
& f(x)=f\left(x_{1}, x_{2}, \ldots, x_{n}\right) \\
& x=\left(x_{1}, x_{2}, \ldots, x_{n}\right)
\end{aligned}
$$

If the ri's are independent then $f(x)=\prod_{i=1}^{n} f\left(x_{i}\right)$

Likelihood

$$
X_{1}, X_{2}, \ldots, X_{n} \sim \operatorname{Bernoulli}(p)
$$

write their joint punt as

$$
f(x ; p)=\prod_{i=1}^{n} f\left(x_{i} ; p\right)
$$

Generically write θ as the parameter.
Joint part or pdf

$$
\begin{aligned}
& f(x ; \theta) \\
& \prod_{i=1}^{n} f(x ; y) \quad \text { (independence) }
\end{aligned}
$$

For observed data $x_{1}, x_{2}, \ldots, x_{n}$
I can calculate $f(x ; \theta)$ \Rightarrow this a function of θ

Likelihood

$$
L(\theta ; x)=f(x ; \theta)
$$

viewed as a function of θ
for observed $x=\left(x_{1}, x_{2}, \ldots, x_{n}\right.$ y

$$
\overline{L(\theta ; x)}=\prod_{i=1}^{n} L\left(\theta ; x_{i}\right) \text { independent }
$$

log Likelihood

$$
\log (L(\theta ; x))=l(\theta ; x)
$$

independence \Rightarrow

$$
l(\theta ; x)=\sum_{i=1}^{n} l\left(\theta, x_{i}\right)
$$

Sufficient statistic
A sufficient statistic $T(x)$ is such that $X \mid T(X)$ does depend. on θ

If $f(x ; \theta)=g(T(x) ; \theta) h(x)$
then $T(x)$ is sufficient

$$
\begin{aligned}
& L(\theta ; x)=g(T(x), \theta) h(x) \\
& \alpha L(\theta ; T(x)) \\
& m^{l} X_{1}, x_{2}, X_{3}, \ldots, X_{n} \stackrel{i d}{\sim} N\left(\mu, \sigma^{2}\right) \\
& T(X)=X \text { is sufficient for } \mu \\
& \bar{X} \sim \operatorname{Nosmal}\left(\mu, \sigma^{2} / n\right)
\end{aligned}
$$

Likelihood Principle
Suppose x and y are two data sets such that

$$
\begin{gathered}
L(\theta ; x) \propto L(\theta ; y) \\
\text { i.e. } L(\theta ; x)=L(\theta ; y) c(x, y)
\end{gathered}
$$

Then inference on θ should be the same for x and

Maximum Likelihood Estimation
Estimate θ as the value that maximizes $L(\theta ; x)$

$$
\begin{aligned}
\hat{\theta}_{M L E} & =\operatorname{argmax} \theta L(\theta ; x) \\
& =\operatorname{argmax} \theta(\theta ; x) \\
& =\operatorname{argmax} \theta L(\theta ; T(x))
\end{aligned}
$$

Example:

$$
\begin{aligned}
X \sim & \operatorname{Binomial}(n, p) \\
L(p ; x) & =\binom{n}{x} p^{x}(1-p)^{n-x} \\
& \propto p^{x}(1-p)^{n-x}
\end{aligned}
$$

$$
l(p ; x) \propto x \log (p)+(n-x) \log (1-p)
$$

- $\frac{d}{d p} l(p ; x)$ set it to O
- solve for p.

$$
\Rightarrow \hat{p}=\frac{x}{n}
$$

It happens to be the case that trueparameter

$\operatorname{Normal}(0,1)$ standard error with \hat{p} plugged

Approx 95% CI:

$$
\begin{aligned}
& \text { Approx } 95 \% \text { CI: } \\
& \left(\hat{\rho}-1.96 \sqrt{\frac{\hat{p}(1-\hat{p})}{n}}, \hat{p}+1.96 \sqrt{\frac{\hat{p}(1-\hat{p})}{n}}\right)
\end{aligned}
$$

$$
\begin{aligned}
\operatorname{Var}(x) & =n p(1-p) \\
\operatorname{Var}\left(\frac{x}{n}\right) & =\frac{1}{n^{2}} \operatorname{Var}(x) \\
& =\frac{n p(1-p)}{n^{2}} \\
& =\frac{(1-p)}{n}
\end{aligned}
$$

Properties of MLEs
Under certain "regularity conditions", we have the following:
Consistent: $\hat{\theta}_{n}$ LE n obseratimes

$$
\hat{\theta}_{1} \xrightarrow{p} \theta
$$

For all $\varepsilon>0$,

$$
\operatorname{Pr}(|\hat{\theta},-\theta|>\varepsilon) \rightarrow 0
$$

as $n \rightarrow \infty$

- Equivariant

If $\hat{\theta}$ is MLE for θ
then $g(\hat{\theta})$ is MLE $g(\theta)$

$$
\left(\begin{array}{lll}
\hat{p} \text { MLE } & \rho \\
\frac{\hat{p}(1-\hat{p})}{n} & \text { MLE } & \frac{p(L-p)}{n}
\end{array}\right)
$$

- Asymptoticlly Normal distributed
- Asymptotically Effizient

Take any estimate $\tilde{\theta}_{n}$
$\frac{\operatorname{Var}\left(\hat{\theta}_{n}\right)}{\operatorname{Var}\left(\hat{\theta}_{n}\right)} \rightarrow$ to a quartity
≤ 1.

Fisher Information
Let $X_{1}, x_{2}, \ldots, X_{n}$ id F_{θ}

$$
\begin{aligned}
I_{n}(\theta) & =\operatorname{Var}\left(\frac{d}{d \theta} \log f(X ; \theta)\right) \\
& =\sum_{i=1}^{n} \operatorname{Var}\left(\frac{d}{d \theta} \log f\left(X_{i} ; \theta\right)\right) \\
& =-E\left[\frac{d^{2}}{d \theta^{2}} \log f(X ; \theta)\right] \\
& =-\sum_{i=1}^{n} E\left[\frac{d^{2}}{d \theta^{2}} \log f\left(X_{i} ; \theta\right)\right] \\
\operatorname{Var}\left(\theta_{n}\right) & \approx \frac{1}{I_{n}(\theta)}
\end{aligned}
$$

Standard Error

$$
\operatorname{se}\left(\hat{\theta}_{n}\right)=\sqrt{\operatorname{Var}\left(\hat{\theta}_{n}\right)}
$$

$$
\begin{aligned}
& \operatorname{se}\left(\hat{\theta}_{n}\right) \approx \frac{1}{\sqrt{I_{n}(\theta)}} \\
& \hat{\sec \left(\hat{\theta}_{n}\right)}=\frac{1}{\sqrt{I_{n}\left(\hat{\theta}_{n}\right)}}
\end{aligned}
$$

MLE CLT

$$
\begin{aligned}
& \frac{\hat{\theta}_{n}-\theta}{\operatorname{se}\left(\hat{\theta}_{n}\right)} \xrightarrow{D} \operatorname{Norml}(0,1) \\
& \frac{\hat{\theta}_{n}-\theta}{\hat{s e}^{\prime}\left(\hat{\theta}_{n}\right)} \xrightarrow{D} \operatorname{Normal}(0,1) \\
& Z=\frac{\hat{\theta}_{n}-\theta}{\hat{s e}_{e}\left(\hat{\theta}_{n}\right)} \text { is approx pistal } \\
& \operatorname{Nosmd}(0,1)
\end{aligned}
$$

Repeat our special case where $\hat{\mu}<\hat{\theta}$

$$
\sqrt{\frac{b^{2}}{n}}<\hat{\operatorname{se}(\hat{\theta})}
$$

