This Week's Topic: Frequentist Statistical Inference

Example: Fair Coin?

Suppose I claim that a specific coin is fair, i.e., that it lands on heads or tails with equal probability. P p

I flip it 20 times and it lands on heads 16 times.

- 1. My data is x = 16 heads out of n = 20 flips.
- 2. My data generation model is $X \sim \text{Binomial}(20, p)$.
- 3. I form the statistic $\hat{p} = 16/20$ as an estimate of \hat{p} .

Let's simulate 10,000 times what my estimate would look like if p = 0.5 and I repeated the 20 coin flips over and over.

If Z~ Normal then 2 atbz ~ Normal => $\overline{X} = \frac{\widehat{z}}{n} \sim Normal(\mu, 6^2/n)$ Exercise: verify this 3) X-M ~ Normal (0,1) 562/n Point estimate of M: A = X in ~ Normel (M, 62/2) Sampling Stateibutton $\frac{n}{m} - m \sim Norml(0,1)$ 5 6²/n

Pivotal Statistic a statistic whose sampling distribution does not depend on any unknown parameters <u>M-M</u> is pirotel 6^c/n Confidence Fatend Interval of the form $(\hat{\mu} - C_{\ell}, \hat{\mu} + C_{\alpha})^{\ell}$ Ce, Cn > D where $Pr(p-c_{\ell} \in \hat{p} \leq p \neq c_{m})$ forms the "level" or coverage probability of the Interval

Confidence Interval Simulation

```
> mu <- 5
> n <- 20
> x <- replicate(10000, rnorm(n=n, mean=mu)) # 10000 studies
> m <- apply(x, 2, mean) # the estimate for each study
> ci <- cbind(m - 1.96/sqrt(n), m + 1.96/sqrt(n))</pre>
> head(ci)
         [,1]
                   [,2]
[1,] 4.797848 5.674386
[2,] 4.599996 5.476534
[3,] 4.472930 5.349468
[4,] 4.778946 5.655485
[5,] 4.778710 5.655248
[6.] 4.425023 5.301561
> cover <- (mu > ci[,1]) & (mu < ci[,2])</pre>
> mean(cover)
[1] 0.9512
```

Let Za be the &-perentite of Normal (0,1). IF Z~Normel(0,1) then P1(2 = 72) = a (1-2) level CI: (m-12a/216, m+12a/216m) Zd12 = - Z1-d/2

When $\alpha = 0.05$ then Za/2 = -1.96, Z1-a/2 = 1.86 (1-a)-level upper CI: perentile $\left(-\infty, \hat{m} + 12a1\frac{b}{r_n}\right)$ (1-2)-level lover CI: $\left(\hat{\mu} - |z_a| \frac{b}{m}, \infty\right)$ & perentile Hypothesis Testing (oin example I did a bypodhists test of P=0,5 rs. P=0.5 hypothesis fest / significance test is a formal procedure for

(omparing observed date with a hypothesis whose truth me want to assess the results of a test are expressed in terms of how well the data and one of the hypotheses agree Nol hypothesis (Ho) is the statement being tested Alternative hypothesis (H,) is the of the null, and it's the a interesting " state Ho and H, are defined in terns of parameter values (or probabiliste property)

Examples ! Juro-sided Ho: M=5 H,: N\$5 oversided SHU: MES HU: MZS H.: M75 H.: ~5

test statistic a statistic designed to quantity evidence against the Ho in favor of H. Ho: M=5 H,: M 75 $|z| = \frac{x-5}{\sqrt{6^2/n}}$

 $\hat{\mu} = X$ $\hat{\mu} = M \sim N(0,1)$ $\sqrt{6^2/n}$

is free them If Ho: M=5 $Z = \frac{X - 5}{\sqrt{6^2/n}} \sim Normel(0,1)$ is pivotal Collect my n data points and calculate my observed o number Statistia: $z = \frac{x-5}{\sqrt{0^2/n}}$ Recoll larger 121 TS, the more evidence against Ho M favor of Hi.

under two-sided test, is sa under a one-sided test Exercise: convince yourself pre be the p-value under repected studies. Sampling dist'n of pt when Kois true 13 Uniform (0,1) for a two-sided test. Show Pr(P* Et; Hotne)=t for te [0,1]. (Pr(Pr = + ; Ho true) = t for one-sided

$$\chi: \Lambda \longrightarrow \mathbb{R}$$

$$(\Omega, \mathcal{F}, \mathbb{P})$$

$$\mathbb{R} = \{\chi(w): w \in \Omega\}$$

$$\mathbb{R} \text{ discrete or continuous}$$

$$\{(x) \quad p.m.f. \text{ or } p.d.f.$$

$$\sum_{x \in \mathbb{R}} f(x) = 1 \text{ or } \int f(x) dx = 1$$

$$x \in \mathbb{R}$$

Joint Distributions
Distribution & two or more random
Variables
Bivariate joint distin:
rvis X, Y
have prof or pdf
$$f(x,y)$$

discrete
 $f(x,y) = Pr(X=x, Y=y)$
 $= Pr(\{u: X(w)=x\} \cap \{u: Y(w)=y\})$
analogous for pdf's
 $A_x \subseteq R$, $A_y \subseteq R$ then
 $Pr(X \in A_x, Y \in A_y)$ is:
 $\sum_{x \in A_x} \sum_{y \in A_y} f(x,y)$ discrete
 $\sum_{x \in A_x} y \in A_y$

Bivariate colf: $F(a,b) = Pr(X \leq a, Y \leq b)$ Marginal Dist'n $f(x) = \sum_{y \in R_y} f(x, y)$ $f(x) = \int_{-}^{-} f(x, y) \, dy$ yery Independence of X and X f(x,y) = f(x)f(y)(onditional distins X 1 Y = y $f(x | y) = \frac{f(x, y)}{f(y)}$

$$\sum_{x \in \mathcal{R}_{x}} f(x|y) = 1$$

$$\int_{x \in \mathcal{R}_{x}} f(x|y) \, dx = 1$$

$$\chi \in \mathcal{R}_{x}$$

$$EEX^{k}[Y=J] = \sum_{\substack{x \in \mathbb{R}^{\times} \\ y \in \mathbb{T}^{n}}} x^{k} f(x|y)$$

$$= \int_{\mathbb{T}^{n}} x^{k} f(x|y) dx$$

$$\pi \in \mathbb{R}_{\times}$$

General Joint Distins

$$\chi_1, \chi_2, ..., \chi_n$$

 $f(\mathbf{x}) = f(\chi_1, \chi_2, ..., \chi_n)$
 $\chi = (\chi_1, \chi_2, ..., \chi_n)$
If the ris are independent
then $f(\mathbf{x}) = f(\chi_i)$

Likelihood
X1, X2, -..., Xn ~ Bernoulli(p)
write their joint prof as

$$f(x; p) = \underset{i=1}{\text{TF}} f(x_i; p)$$

Generically write Θ as the
parameter.
Joint prof or pdF
 $f(x; 0)$
 $\widetilde{T} f(x; 0)$
 $\widetilde{T} f(x; 0)$ (independence)
For observed data $x_0, x_0, ..., x_n$
I can calculate $f(x; 0)$
 $=$) this a function of Θ

Likelihood
L(
$$\theta$$
; x) = $f(x; \theta)$
Viewed as a function of θ
for observed $\pi = (x_1, x_2, \dots, x_n)$
L(θ ; x) = $\Pi L(\theta; x_i)$ independent
log Likelihood
log (L(θ ; x)) = $l(\theta; x)$
independence \Rightarrow
 $l(\theta; x) = \sum_{i=1}^{n} l(\theta; \pi_i)$
Sufficient statistic
A sufficient statistic
A sufficient statistic
 Λ sufficient stat

Then inference on
$$\theta$$
 should be
the same for x and y .
Maximum Likelihousd Estimation
Estimate θ as the value
that maximizes $L(\theta; x)$
 $\tilde{\theta}_{MLE} = \arg \max_{\theta} L(\theta; x)$
 $= \arg \max_{\theta} L(\theta; x)$

Example:

$$\chi \sim Binomial(n, p)$$

 $L(p; x) = {\binom{n}{x}} p^{x}(1-p)^{n-x}$
 $\propto p^{x}(1-p)^{n-x}$

l(p;x) ~ x/og(p) + (n-x)/og(1-p) d l(p;x) set it to O dp solve for p. $\Rightarrow \hat{\rho} = \hat{\chi}$ It happens to be the case that - preparameter p(1-p) Normel(0,1) p(1-p) Standard error with p plugged Approx 95% CI : $\left(\hat{p} - 1.96 \int \frac{\hat{p}(1-\hat{p})}{n}, \hat{p} + 1.96 \int \frac{\hat{p}(1-\hat{p})}{n}\right)$

$$Var(X) = np(1-p)$$

$$Var(X) = \int_{-\infty}^{\infty} Var(X)$$

$$= np(1-p)$$

$$= np(1-p)$$

Fisher Infomation
Let
$$X_{1}, X_{2}, ..., X_{n}$$
 is Formation
 $I_{n}(\theta) = Var\left(\frac{d}{d\theta}\log f(X;\theta)\right)$
 $= \sum_{i=1}^{n} Var\left(\frac{d}{d\theta}\log f(X;;\theta)\right)$
 $= -E\left[\frac{d^{n}}{d\theta^{2}}\log f(X;\theta)\right]$
 $= -\sum_{i=1}^{n} E\left[\frac{d^{n}}{d\theta^{2}}\log f(X;;\theta)\right]$
 $Var\left(\theta_{n}\right) \approx \frac{1}{I_{n}(\theta)}$

$$se(\hat{\theta}_{n}) \approx \frac{1}{|I(\theta)|}$$

$$se(\hat{\theta}_{n}) = \frac{1}{|I(\theta)|}$$

$$MLE \ CLT$$

$$\hat{\theta}_{n} - \theta \qquad D \qquad Normd(0,1)$$

$$se(\hat{\theta}_{n})$$

$$\hat{\theta}_{n} - \theta \qquad D \qquad Normd(0,1)$$

$$se(\hat{\theta}_{n}) \qquad Normd(0,1)$$

$$\hat{se}(\hat{\theta}_{n}) \qquad T \qquad approx \ pivold$$

$$Se(\hat{\theta}_{n}) \qquad Normd(0,1)$$

Repeat our special case where $\hat{\mu} \leftarrow \hat{\theta}$ $\int_{-\pi}^{62} \mathcal{L} = \hat{se}(\hat{\theta})$