
High-Dimensional Data and Inference
Definition
High-dimesional inference is the scenario where we perform inference simultaneously on “many” para-
maters.

“Many” can be as few as three parameters (which is where things start to get interesting), but in modern
applications this is typically on the order of thousands to billions of paramaters.

High-dimesional data is a data set where the number of variables measured is many.

Large same size data is a data set where few variables are measured, but many observations are measured.

Big data is a data set where there are so many data points that it cannot be managed straightforwardly in
memory, but must rather be stored and accessed elsewhere. Big data can be high-dimensional, large sample
size, or both.

We will abbreviate high-dimensional with HD.

Examples
In all of these examples, many measurements are taken and the goal is often to perform inference on many
paramaters simultaneously.

• Spatial epidemiology
• Environmental monitoring
• Internet user behavior
• Genomic profiling
• Neuroscience imaging
• Financial time series

HD Gene Expression Data

> knitr::include_graphics("./images/rna_sequencing.png")



It’s possible to measure the level of gene expression – how much mRNA is being transcribed – from thousands
of cell simultaneously in a single biological sample.

Typically, gene expression is measured over varying biological conditions, and the goal is to perform inference
on the relationship between expression and the varying conditions.

This results in thousands of simultaneous inferences.

The typical sizes of these data sets are 1000 to 50,000 genes and 10 to 1000 observations.

The gene expression values are typically modeled as approximately Normal or overdispersed Poisson.

There is usually shared signal among the genes, and there are often unobserved latent variables.



Y m×n
observations

genes



y11 y12 · · · y1n
y21 y22 · · · y2n

...
...

. . .
...

ym1 ym2 · · · ymn


Xd×n study designx11 x12 · · · x1n
...

...
. . .

...
xd1 xd2 · · · xdn



The Y matrix contains gene expression measurements for m genes (rows) by n observations (columns). The
values yij are either in R or Z+ = {0, 1, 2, . . .}.

The X matrix contains the study design of d explanatory variables (rows) by the n observations (columns).

Note that m� n� d.

Many Responses Model
Gene expression is an example of what I call the many responses model.

We’re interested in performing simultaneous inference on d paramaters for each of m models such as:

Y 1 = β1X +E1

Y 2 = β2X +E2

...
Y m = βmX +Em

For example, Y 1 = β1X +E1 is vector notation of (in terms of observations j):

{Y1j = β11X1j + β12X2j + · · ·+ β1dXdj + E1j}nj=1

We have made two changes from last week:

1. We have transposed X and β.
2. We have changed the number of explanatory variables from p to d.

Let Bm×d be the matrix of parameters (βik) relating the m response variables to the d explanatory variables.
The full HD model is

Y m×n = Bm×d Xd×n + Em×n
Yi1 · · · Yin


=


βi1 βid


[
X11 · · · X1n
Xd1 · · · Xdn

]
+


Ei1 · · · Ein





Note that if we make OLS assumptions, then we can calculate:

B̂
OLS

= Y XT (XXT )−1

Ŷ = B̂X = Y XT (XXT )−1X

so here the projection matrix is P = XT (XXT )−1X and acts from the RHS, Ŷ = Y P .

We will see this week and next that B̂
OLS

has nontrivial drawbacks. Thefore, we will be exploring other
ways of estimating B.

We of course aren’t limited to OLS models. We could consider the many response GLM:

g (E [Y m×n|X]) = Bm×dXd×n

and we could even replace Bm×dXd×n with d smoothers for each of the m response variable.

HD SNP Data

> knitr::include_graphics("./images/snp_dna.png")

It is possible to measure single nucleotide polymorphisms at millions of locations across the genome.

The base (A, C, G, or T) is measured from one of the strands.

For example, on the figure to the left, the individual is heterozygous CT at this SNP location.



Xm×n
individuals

SNPs



x11 x12 · · · x1n
x21 x22 · · · x2n

...
...

. . .
...

xm1 xm2 · · · xmn


y1×n trait[

y11 y12 · · · y1n
]

The X matrix contains SNP genotypes for m SNPs (rows) by n individuals (columns). The values xij ∈
{0, 1, 2} are conversions of genotypes (e.g., CC, CT, TT) to counts of one of the alleles.

The y vector contains the trait values of the n individuals.

Note that m� n.

Many Regressors Model
The SNP-trait model is an example of what I call the many regressors model. A single model is fit of a
response variable on many regressors (i.e., explanatory variables) simultaneously.

This involves simultaneously inferring m paramaters β = (β1, β2, . . . , βm) in models such as:

Y = α1 + βX +E

which is an n-vector with component j being:

Yj = α+
m∑
i=1

βiXij + Ej

As with the many responses model, we do not need to limit the model to the OLS type where the response
variable is approximately Normal distributed. Instead we can consider more general models such as

g (E [Y |X]) = α1 + βX

for some link function g(·).

Goals
In both types of models we are interested in:

• Forming point estimates
• Testing statistical hypothesis
• Calculating posterior distributions
• Leveraging the HD data to increase our power and accuracy

Sometimes we are also interested in confidence intervals in high dimensions, but this is less common.



Challenges
Here are several of the new challenges we face when analyzing high-dimensional data:

• Standard estimation methods may be suboptimal in high dimensions
• New measures of significance are needed
• There may be dependence and latent variables among the high-dimensional variables
• The fact that m� n poses challenges, especially in the many regressors model

HD data provide new challenges, but they also provide opportunities to model variation in the data in ways
not possible for low-dimensional data.

Many Responses Model

Shrinkage and Empirical Bayes
Estimating Several Means
Let’s start with the simplest many responses model where there is only an interncept and only one observation
per variable. This means that n = 1 and d = 1 where X = 1.

This model can be written as Yi ∼ Normal(βi, 1) for the i = 1, 2, . . . ,m response variables. Suppose also that
Y1, Y2, . . . , Ym are jointly independent.

Let’s assume that β1, β2, . . . , βm are fixed, nonrandom parameters.

Usual MLE
The usual estimates of βi are to set

β̂MLE
i = Y i.

This is also the OLS solution.

Loss Function
Suppose we are interested in the simultaneous loss function

L(β, β̂) =
∑
i=1

(βi − β̂i)2

with risk R(β, β̂) = E[L(β, β̂)].

Stein’s Paradox
Consider the following James-Stein estimator:

β̂JS
i =

(
1− m− 2∑m

k=1 Y
2
k

)
Yi.

In a shocking result called Stein’s paradox, it was shown that when m ≥ 3 then

R
(
β, β̂

JS)
< R

(
β, β̂

MLE)
.



This means that the usual MLE is dominated by this JS estimator for any, even nonrandom, configuration of
β1, β2, . . . , βm!

What is going on?

Let’s first take a linear regression point of view to better understand this paradox.

Then we will return to the empirical Bayes example from earlier.
> beta <- seq(-1, 1, length.out=50)
> y <- beta + rnorm(length(beta))
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The blue line is the least squares regression line.
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> beta <- seq(-10, 10, length.out=50)
> y <- beta + rnorm(length(beta))
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The blue line is the least squares regression line.
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Inverse Regression Approach
While Yi = βi +Ei where Ei ∼ Normal(0, 1), it is also the case that βi = Yi −Ei where −Ei ∼ Normal(0, 1).

Even though we’re assuming the βi are fixed, suppose we imagine for the moment that the βi are random
and take a least squares appraoch. We will try to estimate the linear model

E[βi|Yi] = a+ bYi.

Why would we do this? The loss function is

m∑
i=1

(βi − β̂i)2

so it makes sense to estimate βi by setting β̂i to a regression line.

The least squares solution tells us to set

β̂i = â+ b̂Yi

= (β̄ − b̂Ȳ ) + b̂Yi

= β̄ + b̂(Yi − Ȳ )

where

b̂ =
∑m
i=1(Yi − Ȳ )(βi − β̄)∑m

i=1(Yi − Ȳ )2
.

We can estimate β̄ with Ȳ since E[β̄] = E[Ȳ ].

We also need to find an estimate of
∑m
i=1(Yi − Ȳ )(βi − β̄). Note that

βi − β̄ = Yi − Ȳ − (Ei + Ē)

so that

m∑
i=1

(Yi − Ȳ )(βi − β̄) =
m∑
i=1

(Yi − Ȳ )(Yi − Ȳ )

+
m∑
i=1

(Yi − Ȳ )(Ei − Ē)

Since Yi = βi + Ei it follows that

E
[
m∑
i=1

(Yi − Ȳ )(Ei − Ē)
]

= E
[
m∑
i=1

(Ei − Ē)(Ei − Ē)
]

= m− 1.

Therefore,

E
[
m∑
i=1

(Yi − Ȳ )(βi − β̄)
]

= E
[
m∑
i=1

(Yi − Ȳ )2 − (m− 1)
]
.



This yields

b̂ =
∑m
i=1(Yi − Ȳ )2 − (m− 1)∑m

i=1(Yi − Ȳ )2
= 1− m− 1∑m

i=1(Yi − Ȳ )2

and

β̂IR
i = Ȳ +

(
1− m− 1∑m

i=1(Yi − Ȳ )2

)
(Yi − Ȳ )

If instead we had started with the no intercept model

E[βi|Yi] = bYi.

we would have ended up with

β̂IR
i =

(
1− m− 1∑m

i=1(Yi − Ȳ )2

)
Yi

In either case, it can be shown that

R
(
β, β̂

IR)
< R

(
β, β̂

MLE)
.

The blue line is the least squares regression line of βi on Yi, and the red line is β̂IR
i .
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Empirical Bayes Estimate

Suppose that Yi|βi ∼ Normal(βi, 1) where these rv’s are jointly independent. Also suppose that βi
iid∼

Normal(a, b2). Taking the empirical Bayes approach, we get:

f(yi; a, b) =
∫
f(yi|βi)f(βi; a, b)dβi ∼ Normal(a, 1 + b2).

=⇒ â = Y , 1 + b̂2 =
∑m
k=1(Yk − Y )2

n

E[βi|Yi] = 1
1 + b2 a+ b2

1 + b2Yi =⇒

β̂EB
i = Ê[βi|Yi] = 1

1 + b̂2
â+ b̂2

1 + b̂2
Yi

= m∑m
k=1(Yk − Y )2

Y +
(

1− m∑m
k=1(Yk − Y )2

)
Yi

As with β̂
JS

and β̂
IR
, we have

R
(
β, β̂

EB)
< R

(
β, β̂

MLE)
.

EB for a Many Responses Model
Consider the many responses model where Y i|X ∼ MVNn(βiX, σ2I) where the vectors Y i|X are jointly
independent (i = 1, 2, . . . ,m). Here we’ve made the simplifying assumption that the variance σ2 is equal
across all responses, but this would not be generally true.

The OLS (and MLE) solution is

B̂ = Y XT (XXT )−1.

Suppose we extend this so that Y i|X,βi ∼ MVNn(βiX, σ2I) and βi
iid∼ MVNd(u,V ).

Since β̂i|βi ∼ MVNd(βi, σ2(XXT )−1), it follows that marginally

β̂i
iid∼ MVNd(u, σ2(XXT )−1 + V ).

Therefore,

û =
∑m
i=1 β̂i
m

V̂ = ˆCov
(
β̂
)
− σ̂2(XXT )−1

where ˆCov
(
β̂
)
is the d× d sample covariance (or MLE covariance) of the β̂i estimates.

Also, σ̂2 is obtained by averaging the estimate over all m regressions.



We then do inference based on the prior distribution βi
iid∼ MVNd(û, V̂ ). The posterior distribution of

βi|Y ,X is MVN with mean

(
1
σ̂2 (XXT ) + V̂

−1
)−1( 1

σ̂2 (XXT )β̂i + V̂
−1
û

)
and covariance

(
1
σ̂2 (XXT ) + V̂

−1
)−1

.

Multiple Testing
Motivating Example
Hedenfalk et al. (2001) NEJM measured gene expression in three different breast cancer tumor types. In
your homework, you have analyzed these data and have specifically compared BRCA1 mutation positive
tumors to BRCA2 mutation positive tumors.

The qvalue package has the p-values when testing for a difference in population means between these two
groups (called “differential expression”). There are 3170 genes tested, resulting in 3170 p-values.

Note that this analysis is a version of the many responses model.
> library(qvalue)
> data(hedenfalk); df <- data.frame(p=hedenfalk$p)
> ggplot(df, aes(x = p)) +
+ ggtitle("p-value density histogram") +
+ geom_histogram(aes_string(y = '..density..'), colour = "black",
+ fill = "white", binwidth = 0.04, center=0.02)
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Challenges
• Traditional p-value thresholds such as 0.01 or 0.05 may result in too many false positives. For example,

in the above example, a 0.05 threshold could result in 158 false positives.
• A careful balance of true positives and false positives must be achieved in a manner that is scientifically

interpretable.
• There is information in the joint distribution of the p-values that can be leveraged.
• Dependent p-values may make this type of analysis especially difficult (next week’s topic).

> qobj <- qvalue(hedenfalk$p)
> hist(qobj)



π̂0 = 0.67

0

1

2

3

4

0.00 0.25 0.50 0.75 1.00

p−value

de
ns

ity

Variables

q−values

local FDR

π̂0 = 0.67

p−value density histogram

Outcomes
Possible outcomes from m hypothesis tests based on applying a significance threshold 0 < t ≤ 1 to their
corresponding p-values.

Not Significant Significant Total
Null True U V m0
Alternative True T S m1
Total W R m

Error Rates
Suppose we are testing m hypotheses based on p-values p1, p2, . . . , pm.

Multiple hypothesis testing is the process of deciding which of these p-values should be called statistically
significant.

This requires formulating and estimating a compound error rate that quantifies the quality of the decision.

Bonferroni Correction
The family-wise error rate is the probability of any false positive occurring among all tests called significant.
The Bonferroni correction is a result that shows that utilizing a p-value threshold of α/m results in
FWER ≤ α. Specifically,



FWER ≤ Pr(∪{Pi ≤ α/m})

≤
m∑
i=1

Pr(Pi ≤ α/m) =
m∑
i=1

α/m = α

where the above probability calculations are done under the assumption that all H0 are true.

False Discovery Rate
The false discovery rate (FDR) measures the proportion of Type I errors — or “false discoveries” — among
all hypothesis tests called statistically significant. It is defined as

FDR = E
[

V

R ∨ 1

]
= E

[
V

R

∣∣∣∣R > 0
]

Pr(R > 0).

This is less conservative than the FWER and it offers a clearer balance between true positives and false
positives.

There are two other false discovery rate definitions, where the main difference is in how the R = 0 event is
handled. These quantities are called the positive false discovery rate (pFDR) and the marginal false
discovery rate (mFDR), defined as follows:

pFDR = E
[
V

R

∣∣∣∣R > 0
]
,

mFDR = E [V ]
E [R] .

Note that pFDR = mFDR = 1 whenever all null hypotheses are true, whereas FDR can always be made
arbitrarily small because of the extra term Pr(R > 0).

Point Estimate
Let FDR(t) denote the FDR when calling null hypotheses significant whenever pi ≤ t, for i = 1, 2, . . . ,m.
For 0 < t ≤ 1, we define the following random variables:

V (t) = #{true null pi : pi ≤ t}
R(t) = #{pi : pi ≤ t}

In terms of these, we have

FDR(t) = E
[

V (t)
R(t) ∨ 1

]
.

For fixed t, the following defines a family of conservatively biased point estimates of FDR(t):

ˆFDR(t) = m̂0(λ) · t
[R(t) ∨ 1] .

The term m̂0(λ) is an estimate of m0, the number of true null hypotheses. This estimate depends on the
tuning parameter λ, and it is defined as



m̂0(λ) = m−R(λ)
(1− λ) .

Sometimes instead of m0, the quantity

π0 = m0

m

is estimated, where simply

π̂0(λ) = m̂0(λ)
m

= m−R(λ)
m(1− λ) .

It can be shown that E[m̂0(λ)] ≥ m0 when the p-values corresponding to the true null hypotheses are
Uniform(0,1) distributed (or stochastically greater).

There is an inherent bias/variance trade-off in the choice of λ. In most cases, when λ gets smaller, the bias of
m̂0(λ) gets larger, but the variance gets smaller.

Therefore, λ can be chosen to try to balance this trade-off.

Adaptive Threshold
If we desire a FDR level of α, it is tempting to use the p-value threshold

t∗α = max
{
t : ˆFDR(t) ≤ α

}
which identifies the largest estimated FDR less than or equal to α.

Conservative Properties
When the p-value corresponding to true null hypothesis are distributed iid Uniform(0,1), then we have the
following two conservative properties.

E
[

ˆFDR(t)
]
≥ FDR(t)

E
[

ˆFDR(t∗α)
]
≤ α

Q-Values
In single hypothesis testing, it is common to report the p-value as a measure of significance. The q-value is
the FDR based measure of significance that can be calculated simultaneously for multiple hypothesis tests.

The p-value is constructed so that a threshold of α results in a Type I error rate ≤ α. Likewise, the q-value
is constructed so that a threshold of α results in a FDR ≤ α.

Initially it seems that the q-value should capture the FDR incurred when the significance threshold is set at
the p-value itself, FDR(pi). However, unlike Type I error rates, the FDR is not necessarily strictly increasing
with an increasing significance threshold.

To accommodate this property, the q-value is defined to be the minimum FDR (or pFDR) at which the test
is called significant:

q -value(pi) = min
t≥pi

FDR(t)



or

q -value(pi) = min
t≥pi

pFDR(t).

To estimate this in practice, a simple plug-in estimate is formed, for example:

q̂-value(pi) = min
t≥pi

ˆFDR(t).

Various theoretical properties have been shown for these estimates under certain conditions, notably that the
estimated q-values of the entire set of tests are simultaneously conservative as the number of hypothesis tests
grows large.
> plot(qobj)
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Bayesian Mixture Model
Let’s return to the Bayesian classification set up from earlier. Suppose that

• Hi = 0 or 1 according to whether the ith null hypothesis is true or not
• Hi

iid∼ Bernoulli(1− π0) so that Pr(Hi = 0) = π0 and Pr(Hi = 1) = 1− π0

• Pi|Hi
iid∼ (1−Hi) · F0 +Hi · F1, where F0 is the null distribution and F1 is the alternative distribution

Bayesian-Frequentist Connection
Under these assumptions, it has been shown that

https://jdstorey.github.io/asdslectures/week06.html#/classification


pFDR(t) = E
[
V (t)
R(t)

∣∣∣∣R(t) > 0
]

= Pr(Hi = 0|Pi ≤ t)

where Pr(Hi = 0|Pi ≤ t) is the same for each i because of the iid assumptions.

Under these modeling assumptions, it follows that

q-value(pi) = min
t≥pi

Pr(Hi = 0|Pi ≤ t)

which is a Bayesian analogue of the p-value — or rather a “Bayesian posterior Type I error rate”.

Local FDR
In this scenario, it also follows that

pFDR(t) =
∫

Pr(Hi = 0|Pi = pi)dF (pi|pi ≤ t)

where F = π0F0 + (1− π0)F1.

This connects the pFDR to the posterior error probability

Pr(Hi = 0|Pi = pi)

making this latter quantity sometimes interpreted as a local false discovery rate.
> hist(qobj)
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Many Regressors Model

Ridge Regression
Motivation
Ridge regression is a technique for shrinking the coefficients towards zero in linear models.

It also deals with collinearity among explanatory variables. Collinearity is the presence of strong correlation
among two or more explanatory variables.

Optimization Goal
Under the OLS model assumptions, ridge regression fits model by minimizing the following:

n∑
j=1

(
yj −

m∑
i=1

βixij

)2

+ λ

m∑
k=1

β2
k.

Recall the `2 norm:
∑m
k=1 β

2
k = ‖β‖2

2. Sometimes ridge regression is called `2 penalized regression.

As with natural cubic splines, the paramater λ is a tuning paramater that controls how much shrinkage
occurs.

Solution
The ridge regression solution is



β̂
Ridge

= yXT
(
XXT + λI

)−1
.

As λ→ 0, the β̂
Ridge

→ β̂
OLS

.

As λ→∞, the β̂
Ridge

→ 0.

Preprocessing
Implicitly. . .

We mean center y.

We also mean center and standard deviation scale each explanatory variable. Why?

Shrinkage
When XXT = I, then

β̂Ridge
j =

β̂OLS
j

1 + λ
.

This shows how ridge regression acts as a technique for shrinking regression coefficients towards zero. It also
shows that when β̂OLS

j 6= 0, then for all finite λ, β̂Ridge
j 6= 0.

Example

> set.seed(508)
> x1 <- rnorm(20)
> x2 <- x1 + rnorm(20, sd=0.1)
> y <- 1 + x1 + x2 + rnorm(20)
> tidy(lm(y~x1+x2))
# A tibble: 3 x 5

term estimate std.error statistic p.value
<chr> <dbl> <dbl> <dbl> <dbl>

1 (Intercept) 0.965 0.204 4.74 0.000191
2 x1 0.493 2.81 0.175 0.863
3 x2 1.26 2.89 0.436 0.668
> lm.ridge(y~x1+x2, lambda=1) # from MASS package

x1 x2
0.9486116 0.8252948 0.8751979

Existence of Solution
When m > n or when there is high collinearity, then (XXT )−1 will not exist.

However, for λ > 0, it is always the case that
(
XXT + λI

)−1
exists.

Therefore, one can always compute a unique β̂
Ridge

for each λ > 0.



Effective Degrees of Freedom
Similarly to natural cubic splines, we can calculate an effective degrees of freedom by noting that:

ŷ = yXT
(
XXT + λI

)−1
X

The effective degrees of freedom is then the trace of the linear operator:

tr
(
XT

(
XXT + λI

)−1
X

)

Bias and Covariance
Under the OLS model assumptions,

Cov
(
β̂

Ridge)
= σ2

(
XXT + λI

)−1
XXT

(
XXT + λI

)−1

and

bias = E
[
β̂

Ridge]
− β = −λβ

(
XXT + λI

)−1
.

Ridge vs OLS
When the OLS model is true, there exists a λ > 0 such that the MSE of the ridge estimate is lower than than
of the OLS estimate:

E
[
‖β − β̂

Ridge
‖2

2

]
< E

[
‖β − β̂

OLS
‖2

2

]
.

This says that by sacrificing some bias in the ridge estimator, we can obtain a smaller overall MSE, which is
bias2 + variance.

Bayesian Interpretation
The ridge regression solution is equivalent to maximizing

− 1
2σ2

n∑
j=1

(
yj −

m∑
i=1

βixij

)2

− λ

2σ2

m∑
k=1

β2
k

which means it can be interpreted as the MAP solution with a Normal prior on the βi values.

Example: Diabetes Data

> library(lars)
> data(diabetes)
> x <- diabetes$x2 %>% unclass() %>% as.data.frame()
> y <- diabetes$y
> dim(x)
[1] 442 64
> length(y)
[1] 442



> df <- cbind(x,y)
> names(df)
[1] "age" "sex" "bmi" "map" "tc" "ldl" "hdl"
[8] "tch" "ltg" "glu" "age^2" "bmi^2" "map^2" "tc^2"

[15] "ldl^2" "hdl^2" "tch^2" "ltg^2" "glu^2" "age:sex" "age:bmi"
[22] "age:map" "age:tc" "age:ldl" "age:hdl" "age:tch" "age:ltg" "age:glu"
[29] "sex:bmi" "sex:map" "sex:tc" "sex:ldl" "sex:hdl" "sex:tch" "sex:ltg"
[36] "sex:glu" "bmi:map" "bmi:tc" "bmi:ldl" "bmi:hdl" "bmi:tch" "bmi:ltg"
[43] "bmi:glu" "map:tc" "map:ldl" "map:hdl" "map:tch" "map:ltg" "map:glu"
[50] "tc:ldl" "tc:hdl" "tc:tch" "tc:ltg" "tc:glu" "ldl:hdl" "ldl:tch"
[57] "ldl:ltg" "ldl:glu" "hdl:tch" "hdl:ltg" "hdl:glu" "tch:ltg" "tch:glu"
[64] "ltg:glu" "y"

The glmnet() function will perform ridge regression when we set alpha=0.
> library(glmnetUtils)
> ridgefit <- glmnetUtils::glmnet(y ~ ., data=df, alpha=0)
> plot(ridgefit)
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Cross-validation to tune the shrinkage parameter.
> cvridgefit <- glmnetUtils::cv.glmnet(y ~ ., data=df, alpha=0)
> plot(cvridgefit)
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GLMs
The glmnet library (and the glmnetUtils wrapper library) allow one to perform ridge regression on generalized
linear models.

A penalized maximum likelihood estimate is calculated based on

−λ
m∑
i=1

β2
i

added to the log-likelihood.

Lasso Regression
Motivation
One drawback of the ridge regression approach is that coefficients will be small, but they will be nonzero.

An alternative appraoch is the lasso, which stands for “Least Absolute Shrinkage and Selection Operator”.

This performs a similar optimization as ridge, but with an `1 penalty instead. This changes the geometry of
the problem so that coefficients may be zero.

Optimization Goal
Starting with the OLS model assumptions again, we wish to find β that minimizes



n∑
j=1

(
yj −

m∑
i=1

βixij

)2

+ λ

m∑
k=1
|βk|.

Note that
∑m
k=1 |βk| = ‖β‖1, which is the `1 vector norm.

As before, the paramater λ is a tuning paramater that controls how much shrinkage and selection occurs.

Solution
There is no closed form solution to this optimization problem, so it must be solved numerically.

Originally, a quadratic programming solution was proposed with has O(n2m) operations.

Then a least angle regression solution reduced the solution to O(nm2) operations.

Modern coordinate descent methods have further reduced this to O(nm) operations.

Preprocessing
Implicitly. . .

We mean center y.

We also mean center and standard deviation scale each explanatory variable. Why?

Let’s return to the diabetes data set. To do lasso regression, we set alpha=1.
> lassofit <- glmnetUtils::glmnet(y ~ ., data=df, alpha=1)
> plot(lassofit)
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Cross-validation to tune the shrinkage parameter.
> cvlassofit <- glmnetUtils::cv.glmnet(y ~ ., data=df, alpha=1)
> plot(cvlassofit)
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Bayesian Interpretation
The ridge regression solution is equivalent to maximizing

− 1
2σ2

n∑
j=1

(
yj −

m∑
i=1

βixij

)2

− λ

2σ2

m∑
k=1
|βk|

which means it can be interpreted as the MAP solution with a Exponential prior on the βi values.

Inference
Inference on the lasso model fit is difficult. However, there has been recent progress.

One idea proposes a conditional covariance statistic, but this requires all explanatory variables to be
uncorrelated.

Another idea called the knockoff filter controls the false discovery rate and allows for correlation among
explanatory variables.

Both of these ideas have some restrictive assumptions and require the number of observations to exceed the
number of explanatory variables, n > m.



GLMs
The glmnet library (and the glmnetUtils wrapper library) allow one to perform lasso regression on generalized
linear models.

A penalized maximum likelihood estimate is calculated based on

−λ
m∑
i=1
|βi|

added to the log-likelihood.
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