
Logistic Regression
Goal
Logistic regression models a Bernoulli distributed response variable in terms of linear combinations of
explanatory variables.

This extends least squares regression to the case where the response variable captures a “success” or “failure”
type outcome.

Bernoulli as EFD
If Y ∼ Bernoulli(p), then its pmf is:

f(y; p) = py(1− p)1−y

= exp
{

log
(

p

1− p

)
y + log(1− p)

}
In exponential family distribution (EFD) notation,

η(p) = log
(

p

1− p

)
≡ logit(p),

A(η(p)) = log(1 + exp(η)) = log(1− p), and y is the sufficient statistic.

Model
(X1, Y1), (X2, Y2), . . . , (Xn, Yn) are distributed so that Yi|Xi ∼ Bernoulli(pi), where {Yi|Xi}ni=1 are jointly
independent and

logit (E[Yi|Xi]) = log
(

Pr(Yi = 1|Xi)
Pr(Yi = 0|Xi)

)
= Xiβ.

From this it follows that

pi = exp (Xiβ)
1 + exp (Xiβ) .

Maximum Likelihood Estimation
The β are estimated from the MLE calculated from:

` (β;y,X) =
n∑
i=1

log
(

pi
1− pi

)
yi + log(1− pi)

=
n∑
i=1

(xiβ)yi − log (1 + exp (xiβ))

Iteratively Reweighted Least Squares
1. Initialize β(1).

2. For each iteration t = 1, 2, . . ., set

p
(t)
i = logit−1

(
xiβ

(t)
)
, z

(t)
i = logit

(
p

(t)
i

)
+ yi − p(t)

i

p
(t)
i (1− p(t)

i)

and let z(t) =
{
z

(t)
i

}n
i=1

.

3. Form n× n diagonal matrix W (t) with (i, i) entry equal to p(t)
i (1− p(t)

i).

4. Obtain β(t+1) by performing the wieghted least squares regression (see GLS from earlier)

β(t+1) =
(
XTW (t)X

)−1
XTW (t)z(t).

5. Iterate Steps 2-4 over t = 1, 2, 3, . . . until convergence, setting β̂ = β(∞).

GLMs
For exponential family distribution response variables, the generalized linear model is

η (E[Y |X]) = Xβ

where η(θ) is function of the expected value θ into the natural parameter. This is called the canonical link
function in the GLM setting.

The iteratively reweighted least squares algorithm presented above for calculating (local) maximum
likelihood estimates of β has a generalization to a large class of exponential family distribution response
vairables.

glm() Function in R
Example: Grad School Admissions

> mydata <-
+ read.csv("https://stats.idre.ucla.edu/stat/data/binary.csv")
> dim(mydata)
[1] 400 4
> head(mydata)

admit gre gpa rank
1 0 380 3.61 3
2 1 660 3.67 3
3 1 800 4.00 1
4 1 640 3.19 4
5 0 520 2.93 4
6 1 760 3.00 2

Data and analysis courtesy of http://www.ats.ucla.edu/stat/r/dae/logit.htm.

Explore the Data

> apply(mydata, 2, mean)
admit gre gpa rank

0.3175 587.7000 3.3899 2.4850
> apply(mydata, 2, sd)

http://www.ats.ucla.edu/stat/r/dae/logit.htm

admit gre gpa rank
0.4660867 115.5165364 0.3805668 0.9444602

>
> table(mydata$admit, mydata$rank)

1 2 3 4
0 28 97 93 55
1 33 54 28 12

> ggplot(data=mydata) +
+ geom_boxplot(aes(x=as.factor(admit), y=gre))

200

400

600

800

0 1

as.factor(admit)

gr
e

> ggplot(data=mydata) +
+ geom_boxplot(aes(x=as.factor(admit), y=gpa))

2.5

3.0

3.5

4.0

0 1

as.factor(admit)

gp
a

Logistic Regression in R

> mydata$rank <- factor(mydata$rank, levels=c(1, 2, 3, 4))
> myfit <- glm(admit ~ gre + gpa + rank,
+ data = mydata, family = "binomial")
> myfit

Call: glm(formula = admit ~ gre + gpa + rank, family = "binomial",
data = mydata)

Coefficients:
(Intercept) gre gpa rank2 rank3

-3.989979 0.002264 0.804038 -0.675443 -1.340204
rank4

-1.551464

Degrees of Freedom: 399 Total (i.e. Null); 394 Residual
Null Deviance: 500
Residual Deviance: 458.5 AIC: 470.5

Summary of Fit

> summary(myfit)

Call:
glm(formula = admit ~ gre + gpa + rank, family = "binomial",

data = mydata)

Deviance Residuals:
Min 1Q Median 3Q Max

-1.6268 -0.8662 -0.6388 1.1490 2.0790

Coefficients:
Estimate Std. Error z value Pr(>|z|)

(Intercept) -3.989979 1.139951 -3.500 0.000465 ***
gre 0.002264 0.001094 2.070 0.038465 *
gpa 0.804038 0.331819 2.423 0.015388 *
rank2 -0.675443 0.316490 -2.134 0.032829 *
rank3 -1.340204 0.345306 -3.881 0.000104 ***
rank4 -1.551464 0.417832 -3.713 0.000205 ***

Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1

(Dispersion parameter for binomial family taken to be 1)

Null deviance: 499.98 on 399 degrees of freedom
Residual deviance: 458.52 on 394 degrees of freedom
AIC: 470.52

Number of Fisher Scoring iterations: 4

ANOVA of Fit

> anova(myfit, test="Chisq")
Analysis of Deviance Table

Model: binomial, link: logit

Response: admit

Terms added sequentially (first to last)

Df Deviance Resid. Df Resid. Dev Pr(>Chi)
NULL 399 499.98
gre 1 13.9204 398 486.06 0.0001907 ***
gpa 1 5.7122 397 480.34 0.0168478 *
rank 3 21.8265 394 458.52 7.088e-05 ***

Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
> anova(myfit, test="LRT")
Analysis of Deviance Table

Model: binomial, link: logit

Response: admit

Terms added sequentially (first to last)

Df Deviance Resid. Df Resid. Dev Pr(>Chi)

NULL 399 499.98
gre 1 13.9204 398 486.06 0.0001907 ***
gpa 1 5.7122 397 480.34 0.0168478 *
rank 3 21.8265 394 458.52 7.088e-05 ***

Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1

Example: Contraceptive Use

> cuse <-
+ read.table("http://data.princeton.edu/wws509/datasets/cuse.dat",
+ header=TRUE)
> dim(cuse)
[1] 16 5
> head(cuse)

age education wantsMore notUsing using
1 <25 low yes 53 6
2 <25 low no 10 4
3 <25 high yes 212 52
4 <25 high no 50 10
5 25-29 low yes 60 14
6 25-29 low no 19 10

Data and analysis courtesy of http://data.princeton.edu/R/glms.html.

A Different Format
Note that in this data set there are multiple observations per explanatory variable configuration.

The last two columns of the data frame count the successes and failures per configuration.
> head(cuse)

age education wantsMore notUsing using
1 <25 low yes 53 6
2 <25 low no 10 4
3 <25 high yes 212 52
4 <25 high no 50 10
5 25-29 low yes 60 14
6 25-29 low no 19 10

Fitting the Model
When this is the case, we call the glm() function slighlty differently.
> myfit <- glm(cbind(using, notUsing) ~ age + education + wantsMore,
+ data=cuse, family = binomial)
> myfit

Call: glm(formula = cbind(using, notUsing) ~ age + education + wantsMore,
family = binomial, data = cuse)

Coefficients:
(Intercept) age25-29 age30-39 age40-49 educationlow

-0.8082 0.3894 0.9086 1.1892 -0.3250
wantsMoreyes

http://data.princeton.edu/R/glms.html

-0.8330

Degrees of Freedom: 15 Total (i.e. Null); 10 Residual
Null Deviance: 165.8
Residual Deviance: 29.92 AIC: 113.4

Summary of Fit

> summary(myfit)

Call:
glm(formula = cbind(using, notUsing) ~ age + education + wantsMore,

family = binomial, data = cuse)

Deviance Residuals:
Min 1Q Median 3Q Max

-2.5148 -0.9376 0.2408 0.9822 1.7333

Coefficients:
Estimate Std. Error z value Pr(>|z|)

(Intercept) -0.8082 0.1590 -5.083 3.71e-07 ***
age25-29 0.3894 0.1759 2.214 0.02681 *
age30-39 0.9086 0.1646 5.519 3.40e-08 ***
age40-49 1.1892 0.2144 5.546 2.92e-08 ***
educationlow -0.3250 0.1240 -2.620 0.00879 **
wantsMoreyes -0.8330 0.1175 -7.091 1.33e-12 ***

Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1

(Dispersion parameter for binomial family taken to be 1)

Null deviance: 165.772 on 15 degrees of freedom
Residual deviance: 29.917 on 10 degrees of freedom
AIC: 113.43

Number of Fisher Scoring iterations: 4

ANOVA of Fit

> anova(myfit)
Analysis of Deviance Table

Model: binomial, link: logit

Response: cbind(using, notUsing)

Terms added sequentially (first to last)

Df Deviance Resid. Df Resid. Dev
NULL 15 165.772
age 3 79.192 12 86.581
education 1 6.162 11 80.418

wantsMore 1 50.501 10 29.917

More on this Data Set
See http://data.princeton.edu/R/glms.html for more on fitting logistic regression to this data set.

A number of interesting choices are made that reveal more about the data.

Generalized Linear Models
Definition
The generalized linear model (GLM) builds from OLS and GLS to allow for the case where Y |X is
distributed according to an exponential family distribution. The estimated model is

g (E[Y |X]) = Xβ

where g(·) is called the link function. This model is typically fit by numerical methods to calculate the
maximum likelihood estimate of β.

Exponential Family Distributions
Recall that if Y follows an EFD then it has pdf of the form

f(y;θ) = h(y) exp
{

d∑
k=1

ηk(θ)Tk(y)−A(η)
}

where θ is a vector of parameters, {Tk(y)} are sufficient statistics, A(η) is the cumulant generating function.

The functions ηk(θ) for k = 1, . . . , d map the usual parameters θ (often moments of the rv Y) to the natural
parameters or canonical parameters.

{Tk(y)} are sufficient statistics for {ηk} due to the factorization theorem.

A(η) is sometimes called the log normalizer because

A(η) = log
∫
h(y) exp

{
d∑
k=1

ηk(θ)Tk(y)
}
.

Natural Single Parameter EFD
A natural single parameter EFD simplifies to the scenario where d = 1 and T (y) = y

f(y; η) = h(y) exp {η(θ)y −A(η(θ))}

where without loss of generality we can write E[Y] = θ.

http://data.princeton.edu/R/glms.html

Dispersion EFDs
The family of distributions for which GLMs are most typically developed are dispersion EFDs. An example
of a dispersion EFD that extends the natural single parameter EFD is

f(y; η) = h(y, φ) exp
{
η(θ)y −A(η(θ))

φ

}
where φ is the dispersion parameter.

Example: Normal
Let Y ∼ Normal(µ, σ2). Then:

θ = µ, η(µ) = µ

φ = σ2

A(µ) = µ2

2

h(y, σ2) = 1√
2πσ2

e−
1
2
y2

σ2

EFD for GLMs
There has been a very broad development of GLMs and extensions. A common setting for introducting GLMs
is the dispersion EFD with a general link function g(·).

See the classic text Generalized Linear Models, by McCullagh and Nelder, for such a development.

Components of a GLM
1. Random: The particular exponential family distribution.

Y ∼ f(y; η, φ)

2. Systematic: The determination of each ηi from Xi and β.

ηi = Xiβ

3. Parametric Link: The connection between E[Yi|Xi] and Xiβ.

g(E[Yi|Xi]) = Xiβ

Link Functions
Even though the link function g(·) can be considered in a fairly general framework, the canonical link
function η(·) is often utilized.

The canonical link function is the function that maps the expected value into the natural paramater.

In this case, Y |X is distributed according to an exponential family distribution with

η (E[Y |X]) = Xβ.

Calculating MLEs
Given the model g (E[Y |X]) = Xβ, the EFD should be fully parameterized. The Newton-Raphson method
or Fisher’s scoring method can be utilized to find the MLE of β.

Newton-Raphson
1. Initialize β(0). For t = 1, 2, . . .

2. Calculate the score s(β(t)) = ∇`(β;X,Y) |β=β(t) and observed Fisher information

H(β(t)) = −∇∇T `(β;X,Y) |β=β(t)

. Note that the observed Fisher information is also the negative Hessian matrix.

3. Update β(t+1) = β(t) +H(β(t))−1s(β(t)).

4. Iterate until convergence, and set β̂ = β(∞).

Fisher’s scoring
1. Initialize β(0). For t = 1, 2, . . .

2. Calculate the score s(β(t)) = ∇`(β;X,Y) |β=β(t) and expected Fisher information

I(β(t)) = −E
[
∇∇T `(β;X,Y) |β=β(t)

]
.

3. Update β(t+1) = β(t) + I(β(t))−1s(β(t)).

4. Iterate until convergence, and set β̂ = β(∞).

When the canonical link function is used, the Newton-Raphson algorithm and Fisher’s scoring algorithm are
equivalent.

Exercise: Prove this.

Iteratively Reweighted Least Squares
For the canonical link, Fisher’s scoring method can be written as an iteratively reweighted least squares
algorithm, as shown earlier for logistic regression. Note that the Fisher information is

I(β(t)) = XTWX

where W is an n× n diagonal matrix with (i, i) entry equal to Var(Yi|X;β(t)).

The score function is

s(β(t)) = XT
(
Y −Xβ(t)

)
and the current coefficient value β(t) can be written as

β(t) = (XTWX)−1XTWXβ(t).

Putting this together we get

β(t) + I(β(t))−1s(β(t)) = (XTWX)−1XTWz(t)

where

z(t) = Xβ(t) +W−1
(
Y −Xβ(t)

)
.

This is a generalization of the iteratively reweighted least squares algorithm we showed earlier for logistic
regression.

Estimating Dispersion
For the simple dispersion model above, it is typically straightforward to calculate the MLE φ̂ once β̂ has
been calculated.

CLT Applied to the MLE
Given that β̂ is a maximum likelihood estimate, we have the following CLT result on its distribution as
n→∞:

√
n(β̂ − β) D−→ MVNp(0, φ(XTWX)−1)

Approximately Pivotal Statistics
The previous CLT gives us the following two approximations for pivtoal statistics. The first statistic facilitates
getting overall measures of uncertainty on the estimate β̂.

φ̂−1(β̂ − β)T (XTŴX)(β̂ − β) .∼ χ2
1

This second pivotal statistic allows for performing a Wald test or forming a confidence interval on each
coefficient, βj , for j = 1, . . . , p.

β̂j − βj√
φ̂[(XTŴX)−1]jj

.∼ Normal(0, 1)

Deviance
Let η̂ be the estimated natural parameters from a GLM. For example, η̂ = Xβ̂ when the canonical link
function is used.

Let η̂n be the saturated model wwhere Yi is directly used to estimate ηi without model constraints. For
example, in the Bernoulli logistic regression model η̂n = Y , the observed outcomes.

The deviance for the model is defined to be

D (η̂) = 2`(η̂n;X,Y)− 2`(η̂;X,Y)

Generalized LRT
Let X0 be a subset of p0 columns of X and let X1 be a subset of p1 columns, where 1 ≤ p0 < p1 ≤ p. Also,
assume that the columns of X0 are a subset of X1.

Without loss of generality, suppose that β0 = (β1, β2, . . . , βp0)T and β1 = (β1, β2, . . . , βp1)T .

Suppose we wish to test H0 : (βp0+1, βp0+2, . . . , βp1) = 0 vs H1 : (βp0+1, βp0+2, . . . , βp1) 6= 0

We can form η̂0 = Xβ̂0 from the GLM model g (E[Y |X0]) = X0β0. We can analogously form η̂1 = Xβ̂1
from the GLM model g (E[Y |X1]) = X1β1.

The 2 log generalized LRT can then be formed from the two deviance statistics

2 log λ(X,Y) = 2 log L(η̂1;X,Y)
L(η̂0;X,Y) = D (η̂0)−D (η̂1)

where the null distribution is χ2
p1−p0

.

Example: Grad School Admissions
Let’s revisit a logistic regression example now that we know how the various statistics are calculated.
> mydata <-
+ read.csv("http://www.ats.ucla.edu/stat/data/binary.csv")
> dim(mydata)
> head(mydata)

Fit the model with basic output. Note the argument family = "binomial".
> mydata$rank <- factor(mydata$rank, levels=c(1, 2, 3, 4))
> myfit <- glm(admit ~ gre + gpa + rank,
+ data = mydata, family = "binomial")
> myfit

Call: glm(formula = admit ~ gre + gpa + rank, family = "binomial",
data = mydata)

Coefficients:
(Intercept) gre gpa rank2 rank3

-3.989979 0.002264 0.804038 -0.675443 -1.340204
rank4

-1.551464

Degrees of Freedom: 399 Total (i.e. Null); 394 Residual
Null Deviance: 500
Residual Deviance: 458.5 AIC: 470.5

This shows the fitted coefficient values, which is on the link function scale – logit aka log odds here. Also, a
Wald test is performed for each coefficient.
> summary(myfit)

Call:
glm(formula = admit ~ gre + gpa + rank, family = "binomial",

data = mydata)

Deviance Residuals:
Min 1Q Median 3Q Max

-1.6268 -0.8662 -0.6388 1.1490 2.0790

Coefficients:
Estimate Std. Error z value Pr(>|z|)

(Intercept) -3.989979 1.139951 -3.500 0.000465 ***
gre 0.002264 0.001094 2.070 0.038465 *

gpa 0.804038 0.331819 2.423 0.015388 *
rank2 -0.675443 0.316490 -2.134 0.032829 *
rank3 -1.340204 0.345306 -3.881 0.000104 ***
rank4 -1.551464 0.417832 -3.713 0.000205 ***

Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1

(Dispersion parameter for binomial family taken to be 1)

Null deviance: 499.98 on 399 degrees of freedom
Residual deviance: 458.52 on 394 degrees of freedom
AIC: 470.52

Number of Fisher Scoring iterations: 4

Here we perform a generalized LRT on each variable. Note the rank variable is now tested as a single factor
variable as opposed to each dummy variable.
> anova(myfit, test="LRT")
Analysis of Deviance Table

Model: binomial, link: logit

Response: admit

Terms added sequentially (first to last)

Df Deviance Resid. Df Resid. Dev Pr(>Chi)
NULL 399 499.98
gre 1 13.9204 398 486.06 0.0001907 ***
gpa 1 5.7122 397 480.34 0.0168478 *
rank 3 21.8265 394 458.52 7.088e-05 ***

Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1

> mydata <- data.frame(mydata, probs = myfit$fitted.values)
> ggplot(mydata) + geom_point(aes(x=gpa, y=probs, color=rank)) +
+ geom_jitter(aes(x=gpa, y=admit), width=0, height=0.01, alpha=0.3)

0.00

0.25

0.50

0.75

1.00

2.5 3.0 3.5 4.0

gpa

pr
ob

s

rank

1

2

3

4

> ggplot(mydata) + geom_point(aes(x=gre, y=probs, color=rank)) +
+ geom_jitter(aes(x=gre, y=admit), width=0, height=0.01, alpha=0.3)

0.00

0.25

0.50

0.75

1.00

200 400 600 800

gre

pr
ob

s

rank

1

2

3

4

> ggplot(mydata) + geom_boxplot(aes(x=rank, y=probs)) +
+ geom_jitter(aes(x=rank, y=probs), width=0.1, height=0.01, alpha=0.3)

0.2

0.4

0.6

1 2 3 4

rank

pr
ob

s

glm() Function
The glm() function has many different options available to the user.

glm(formula, family = gaussian, data, weights, subset,
na.action, start = NULL, etastart, mustart, offset,
control = list(...), model = TRUE, method = "glm.fit",
x = FALSE, y = TRUE, contrasts = NULL, ...)

To see the different link functions available, type:

help(family)

Nonparametric Regression
Simple Linear Regression
Recall the set up for simple linear regression. For random variables (X1, Y1), (X2, Y2), . . . , (Xn, Yn), simple
linear regression estimates the model

Yi = β1 + β2Xi + Ei

where E[Ei|Xi] = 0, Var(Ei|Xi) = σ2, and Cov(Ei, Ej |Xi, Xj) = 0 for all 1 ≤ i, j ≤ n and i 6= j.

Note that in this model E[Y |X] = β1 + β2X.

Simple Nonparametric Regression
In simple nonparametric regression, we define a similar model while eliminating the linear assumption:

Yi = s(Xi) + Ei

for some function s(·) with the same assumptions on the distribution of E|X. In this model, we also have

E[Y |X] = s(X).

Smooth Functions
Suppose we consider fitting the model Yi = s(Xi) +Ei with the restriction that s ∈ C2, the class of functions
with continuous second derivatives. We can set up an objective function that regularizes how smooth vs
wiggly s is.

Specifically, suppose for a given set of observed data (x1, y1), (x2, y2), . . . , (xn, yn) we wish to identify a
function s ∈ C2 that minimizes for some λ

n∑
i=1

(yi − s(xi))2 + λ

∫
|s′′(x)|2dx

Smoothness Parameter λ

When minimizing

n∑
i=1

(yi − s(xi))2 + λ

∫
|s′′(x)|2dx

it follows that if λ = 0 then any function s ∈ C2 that interpolates the data is a solution.

As λ→∞, then the minimizing function is the simple linear regression solution.

The Solution
For an observed data set (x1, y1), (x2, y2), . . . , (xn, yn) where n ≥ 4 and a fixed value λ, there is an exact
solution to minimizing

n∑
i=1

(yi − s(xi))2 + λ

∫
|s′′(x)|2dx.

The solution is called a natural cubic spline, which is constructed to have knots at x1, x2, . . . , xn.

Natural Cubic Splines
Suppose without loss of generality that we have ordered x1 < x2 < · · · < xn. We assume all xi are unique to
simplify the explanation here, but ties can be deal with.

A natural cubic spline (NCS) is a function constructed from a set of piecewise cubic functions over the
range [x1, xn] joined at the knots so that the second derivative is continuous at the knots. Outside of the
range (< x1 or > xn), the spline is linear and it has continuous second derivatives at the endpoint knots.

Basis Functions
Depending on the value λ, a different ncs will be constructed, but the entire family of ncs solutions over
0 < λ <∞ can be constructed from a common set of basis functions.

We construct n basis functions N1(x), N2(x), . . . , Nn(x) with coefficients θ1(λ), θ2(λ), . . . , θn(λ). The NCS
takes the form

s(x) =
n∑
i=1

θi(λ)Ni(x).

Define N1(x) = 1 and N2(x) = x. For i = 3, . . . , n, define Ni(x) = di−1(x)− di−2(x) where

di(x) = (x− xi)3 − (x− xn)3

xn − xi
.

Recall that we’ve labeled indices so that x1 < x2 < · · · < xn.

Calculating the Solution
Let θλ = (θ1(λ), θ2(λ), . . . , θn(λ))T and let N be the n× n matrix with (i, j) entry equal to Nj(xi). Finally,
let Ω be the n× n matrix with (i, j) entry equal to

∫
N ′′i (x)N ′′j (x)dx.

The solution to θλ are the values that minimize

(y −Nθ)T (y −Nθ) + λθTΩθ.

which results in

θ̂λ = (NTN + λΩ)−1NTy.

Linear Operator
Letting

Sλ = N(NTN + λΩ)−1NT

it folows that the fitted values are

ŷ = Sλy.

Thus, the fitted values from a NCS are contructed by taking linear combination of the response variable
values y1, y2, . . . , yn.

Degrees of Freedom
Recall that in OLS, we formed projection matrix P = X(XTX)−1XT and noted that the number of columns
p of X is also found in the trace of P where tr(P) = p.

The effective degrees of freedom for a model fit by a linear operator is calculated as the trace of the operator.

Therefore, for a given λ, the effective degrees of freedom is

dfλ = tr(Sλ).

Bayesian Intepretation
Minimizing

n∑
i=1

(yi − s(xi))2 + λ

∫
|s′′(x)|2dx

is equivalent to maximizing

exp
{
−
∑n
i=1(yi − s(xi))2

2σ2

}
exp

{
− λ

2σ2

∫
|s′′(x)|2dx

}
.

Therefore, the NCS solution can be interpreted as calculting the MAP where Y |X is Normal and there’s an
Exponential prior on the smoothness of s.

Bias and Variance Trade-off
Typically we will choose some 0 < λ < ∞ in an effort to balance the bias and variance. Let Ŷ = ŝ(X;λ)
where ŝ(·;λ) minimizes the above for some chosen λ on an independent data set. Then

E
[(
Y − Ŷ

)2
]

= E
[
(s(x) + E − ŝ(x;λ))2

]
= E

[
(s(x)− ŝ(x;λ))2

]
+ Var(E)

= (s(x)− E[ŝ(x;λ)])2 + Var (ŝ(x;λ)) + Var(E)
= bias2

λ + varianceλ + Var(E)

where all of the above calculations are conditioned on X = x.

In minimizing

n∑
i=1

(yi − s(xi))2 + λ

∫
|s′′(x)|2dx

the relationship is such that:

↑ λ =⇒ bias2 ↑, variance ↓

↓ λ =⇒ bias2 ↓, variance ↑

Choosing λ

There are several approaches that are commonly used to identify a value of λ, including:

• Scientific knowledge that guides the acceptable value of dfλ
• Cross-validation or some other prediction quality measure
• Model selection measures, such as Akaike information criterion (AIC) or Mallows Cp

Smoothers and Spline Models
We investigated one type of nonparametric regression model here, the NCS. However, in general there are
many such “smoother” methods available in the simple nonparametric regression scenario.

Splines are particularly popular since splines are constructed from putting together polynomials and are
therefore usually tractable to compute and analyze.

Smoothers in R
There are several functions and packages available in R for computing smoothers and tuning smoothness
parameters. Examples include:

• splines library
• smooth.spline()
• loess()
• lowess()

Example

2 4 6 8 10

0
2

4
6

8
10

12

x

y

> y2 <- smooth.spline(x=x, y=y, df=2)
> y5 <- smooth.spline(x=x, y=y, df=5)
> y25 <- smooth.spline(x=x, y=y, df=25)
> ycv <- smooth.spline(x=x, y=y)
> ycv
Call:
smooth.spline(x = x, y = y)

Smoothing Parameter spar= 0.5162045 lambda= 0.0002730906 (11 iterations)
Equivalent Degrees of Freedom (Df): 7.293673
Penalized Criterion (RSS): 14.80602
GCV: 1.180651

2 4 6 8 10

0
2

4
6

8
10

12

x

y

Generalized Additive Models
Ordinary Least Squares
Recall that OLS estimates the model

Yi = β1Xi1 + β2Xi2 + . . .+ βpXip + Ei

= Xiβ + Ei

where E[E|X] = 0 and Cov(E|X) = σ2I.

Additive Models
The additive model (which could also be called “ordinary nonparametric additive regression”) is of the
form

Yi = s1(Xi1) + s2(Xi2) + . . .+ sp(Xip) + Ei

=
p∑
j=1

sj(Xij) + Ei

where the sj(·) for j = 1, . . . , p are a set of nonparametric (or flexible) functions. Again, we assume that
E[E|X] = 0 and Cov(E|X) = σ2I.

Backfitting
The additive model can be fit through a technique called backfitting.

1. Intialize s(0)
j (x) for j = 1, . . . , p.

2. For t = 1, 2, . . ., fit s(t)
j (x) on response variable

yi −
∑
k 6=j

s
(t−1)
k (xij).

3. Repeat until convergence.

Note that some extra steps have to be taken to deal with the intercept.

GAM Definition
Y |X is distributed according to an exponential family distribution. The extension of additive models to this
family of response variable is called generalized additive models (GAMs). The model is of the form

g (E[Yi|Xi]) =
p∑
j=1

sj(Xij)

where g(·) is the link function and the sj(·) are flexible and/or nonparametric functions.

Overview of Fitting GAMs
Fitting GAMs involves putting together the following three tools:

1. We know how to fit a GLM via IRLS
2. We know how to fit a smoother of a single explanatory variable via a least squares solution, as seen for

the NCS
3. We know how to combine additive smoothers by backfitting

GAMs in R
Three common ways to fit GAMs in R:

1. Utilize glm() on explanatory variables constructed from ns() or bs()
2. The gam library
3. The mgcv library

Example

> set.seed(508)
> x1 <- seq(1, 10, length.out=50)
> n <- length(x1)
> x2 <- rnorm(n)
> f <- 4*log(x1) + sin(x1) - 7 + 0.5*x2
> p <- exp(f)/(1+exp(f))
> summary(p)

Min. 1st Qu. Median Mean 3rd Qu. Max.
0.001842 0.074171 0.310674 0.436162 0.860387 0.944761

> y <- rbinom(n, size=1, prob=p)
> mean(y)
[1] 0.42
> df <- data.frame(x1=x1, x2=x2, y=y)

Here, we use the gam() function from the mgcv library. It automates choosing the smoothness of the splines.
> library(mgcv)
> mygam <- gam(y ~ s(x1) + s(x2), family = binomial(), data=df)
> library(broom)
> tidy(mygam)
A tibble: 2 x 5

term edf ref.df statistic p.value
<chr> <dbl> <dbl> <dbl> <dbl>

1 s(x1) 1.87 2.37 12.7 0.00531
2 s(x2) 1.00 1.00 1.16 0.281

> summary(mygam)

Family: binomial
Link function: logit

Formula:
y ~ s(x1) + s(x2)

Parametric coefficients:
Estimate Std. Error z value Pr(>|z|)

(Intercept) -1.1380 0.6723 -1.693 0.0905 .

Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1

Approximate significance of smooth terms:
edf Ref.df Chi.sq p-value

s(x1) 1.87 2.375 12.743 0.00531 **
s(x2) 1.00 1.000 1.163 0.28084

Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1

R-sq.(adj) = 0.488 Deviance explained = 47%
UBRE = -0.12392 Scale est. = 1 n = 50

True probabilities vs. estimated probabilities.
> plot(p, mygam$fitted.values, pch=19); abline(0,1)

0.0 0.2 0.4 0.6 0.8

0.
0

0.
2

0.
4

0.
6

0.
8

p

m
yg

am
$f

itt
ed

.v
al

ue
s

Smoother estimated for x1.
> plot(mygam, select=1)

2 4 6 8 10

−
10

−
5

0
5

x1

s(
x1

,1
.8

7)

Smoother estimated for x2.
> plot(mygam, select=2)

−3 −2 −1 0 1

−
10

−
5

0
5

x2

s(
x2

,1
)

Here, we use the glm() function and include as an explanatory variable a NCS built from the ns() function
from the splines library. We include a df argument in the ns() call.
> library(splines)
> myglm <- glm(y ~ ns(x1, df=2) + x2, family = binomial(), data=df)
> tidy(myglm)
A tibble: 4 x 5

term estimate std.error statistic p.value
<chr> <dbl> <dbl> <dbl> <dbl>

1 (Intercept) -10.9 5.31 -2.06 0.0396
2 ns(x1, df = 2)1 21.4 10.1 2.11 0.0348
3 ns(x1, df = 2)2 6.33 2.11 3.00 0.00272
4 x2 0.734 0.609 1.21 0.228

The spline basis evaluated at x1 values.
> ns(x1, df=2)

1 2
[1,] 0.00000000 0.00000000
[2,] 0.03114456 -0.02075171
[3,] 0.06220870 -0.04138180
[4,] 0.09311200 -0.06176867
[5,] 0.12377405 -0.08179071
[6,] 0.15411442 -0.10132630
[7,] 0.18405270 -0.12025384
[8,] 0.21350847 -0.13845171
[9,] 0.24240131 -0.15579831

[10,] 0.27065081 -0.17217201

[11,] 0.29817654 -0.18745121
[12,] 0.32489808 -0.20151430
[13,] 0.35073503 -0.21423967
[14,] 0.37560695 -0.22550571
[15,] 0.39943343 -0.23519080
[16,] 0.42213406 -0.24317334
[17,] 0.44362840 -0.24933170
[18,] 0.46383606 -0.25354429
[19,] 0.48267660 -0.25568949
[20,] 0.50006961 -0.25564569
[21,] 0.51593467 -0.25329128
[22,] 0.53019136 -0.24850464
[23,] 0.54275927 -0.24116417
[24,] 0.55355797 -0.23114825
[25,] 0.56250705 -0.21833528
[26,] 0.56952943 -0.20260871
[27,] 0.57462513 -0.18396854
[28,] 0.57787120 -0.16253131
[29,] 0.57934806 -0.13841863
[30,] 0.57913614 -0.11175212
[31,] 0.57731586 -0.08265339
[32,] 0.57396762 -0.05124405
[33,] 0.56917185 -0.01764570
[34,] 0.56300897 0.01802003
[35,] 0.55555939 0.05563154
[36,] 0.54690354 0.09506722
[37,] 0.53712183 0.13620546
[38,] 0.52629468 0.17892464
[39,] 0.51450251 0.22310315
[40,] 0.50182573 0.26861939
[41,] 0.48834478 0.31535174
[42,] 0.47414005 0.36317859
[43,] 0.45929198 0.41197833
[44,] 0.44388099 0.46162934
[45,] 0.42798748 0.51201003
[46,] 0.41169188 0.56299877
[47,] 0.39507460 0.61447395
[48,] 0.37821607 0.66631397
[49,] 0.36119670 0.71839720
[50,] 0.34409692 0.77060206
attr(,"degree")
[1] 3
attr(,"knots")
50%
5.5
attr(,"Boundary.knots")
[1] 1 10
attr(,"intercept")
[1] FALSE
attr(,"class")
[1] "ns" "basis" "matrix"

Plot of basis function values vs x1.

2 4 6 8 10

−
0.

2
0.

0
0.

2
0.

4
0.

6
0.

8

x1

ba
si

s
fu

nc
tio

n

> summary(myglm)

Call:
glm(formula = y ~ ns(x1, df = 2) + x2, family = binomial(), data = df)

Deviance Residuals:
Min 1Q Median 3Q Max

-2.0214 -0.3730 -0.0162 0.5762 1.7616

Coefficients:
Estimate Std. Error z value Pr(>|z|)

(Intercept) -10.9229 5.3079 -2.058 0.03960 *
ns(x1, df = 2)1 21.3848 10.1318 2.111 0.03480 *
ns(x1, df = 2)2 6.3266 2.1103 2.998 0.00272 **
x2 0.7342 0.6089 1.206 0.22795

Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1

(Dispersion parameter for binomial family taken to be 1)

Null deviance: 68.029 on 49 degrees of freedom
Residual deviance: 35.682 on 46 degrees of freedom
AIC: 43.682

Number of Fisher Scoring iterations: 7

> anova(myglm, test="LRT")
Analysis of Deviance Table

Model: binomial, link: logit

Response: y

Terms added sequentially (first to last)

Df Deviance Resid. Df Resid. Dev Pr(>Chi)
NULL 49 68.029
ns(x1, df = 2) 2 30.755 47 37.274 2.097e-07 ***
x2 1 1.592 46 35.682 0.207

Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1

True probabilities vs. estimated probabilities.
> plot(p, myglm$fitted.values, pch=19); abline(0,1)

0.0 0.2 0.4 0.6 0.8

0.
0

0.
2

0.
4

0.
6

0.
8

p

m
yg

lm
$f

itt
ed

.v
al

ue
s

Bootstrap for Statistical Models
Homoskedastic Models
Let’s first discuss how one can utilize the bootstrap on any of the three homoskedastic models:

• Simple linear regression

• Ordinary least squares
• Additive models

Residuals
In each of these scenarios we sample data (X1, Y1), (X2, Y2), . . . , (Xn, Yn). Let suppose we calculate fitted
values Ŷi and they are unbiased:

E[Ŷi|X] = E[Yi|X].

We can calculate residuals Êi = Yi − Ŷi for i = 1, 2, . . . , n.

Studentized Residuals
One complication is that the residuals have a covariance. For example, in OLS we showed that

Cov(Ê) = σ2(I − P)

where P = X(XTX)−1XT .

To correct for this induced heteroskedasticity, we studentize the residuals by calculating

Ri = Êi√
1− Pii

which gives Cov(R) = σ2I.

Confidence Intervals
The following is a bootstrap procedure for calculating a confidence interval on some statistic θ̂ calculated
from a homoskedastic model fit. An example is β̂j in an OLS.

1. Fit the model to obtain fitted values Ŷi, studentized residuals Ri, and the statistic of interest θ̂.
For b = 1, 2, . . . , B.

2. Sample n observations with replacement from {Ri}ni=1 to obtain bootstrap residuals R∗1, R∗2, . . . , R∗n.
3. Form new response variables Y ∗i = Ŷi +R∗i .
4. Fit the model to obtain Ŷ ∗i and all other fitted parameters.
5. Calculate statistic of interest θ̂∗(b).

The bootstrap statistics θ̂∗(1), θ̂∗(2), . . . , θ̂∗(B) are then utilized through one of the techniques discussed earlier
(percentile, pivotal, studentized pivotal) to calculate a bootstrap CI.

Hypothesis Testing
Suppose we are testing the hypothesis H0 : E[Y |X] = f0(X) vs H1 : E[Y |X] = f1(X). Suppose it is possible
to form unbiased estimates f0(X) and f1(X) given X, and f0 is a restricted version of f1.

Suppose also we have a statistic T (f̂0, f̂1) for performing this test so that the larger the statistic, the more
evidence there is against the null hypothesis in favor of the alternative.

The big picture strategy is to bootstrap studentized residuals from the unconstrained (alternative hypothesis)
fitted model and then add those to the constrained (null hypothesis) fitted model to generate bootstrap null
data sets.

1. Fit the models to obtain fitted values f̂0(Xi) and f̂1(Xi), studentized residuals Ri from the fit f̂1(Xi),
and the observed statistic T (f̂0, f̂1).
For b = 1, 2, . . . , B.

2. Sample n observations with replacement from {Ri}ni=1 to obtain bootstrap residuals R∗1, R∗2, . . . , R∗n.
3. Form new response variables Y ∗i = f̂0(Xi) +R∗i .
4. Fit the models on the response variables Y ∗i to obtain f̂∗0 and f̂∗1 .
5. Calculate statistic T (f̂∗(b)0 , f̂

∗(b)
1).

The p-value is then calculated as

∑B
b=1 1

(
T (f̂∗(b)0 , f̂

∗(b)
1) ≥ T (f̂0, f̂1)

)
B

Parametric Bootstrap
For more complex scenarios, such as GLMs, GAMs, and heteroskedastic models, it is typically more
straightforward to utilize a parametric bootstrap.

	Logistic Regression
	Goal
	Bernoulli as EFD
	Model
	Maximum Likelihood Estimation
	Iteratively Reweighted Least Squares
	GLMs

	glm() Function in R
	Example: Grad School Admissions
	Explore the Data
	Logistic Regression in R
	Summary of Fit
	ANOVA of Fit
	Example: Contraceptive Use
	A Different Format
	Fitting the Model
	Summary of Fit
	ANOVA of Fit
	More on this Data Set

	Generalized Linear Models
	Definition
	Exponential Family Distributions
	Natural Single Parameter EFD
	Dispersion EFDs
	Example: Normal
	EFD for GLMs
	Components of a GLM
	Link Functions
	Calculating MLEs
	Newton-Raphson
	Fisher's scoring
	Iteratively Reweighted Least Squares
	Estimating Dispersion
	CLT Applied to the MLE
	Approximately Pivotal Statistics
	Deviance
	Generalized LRT
	Example: Grad School Admissions
	glm() Function

	Nonparametric Regression
	Simple Linear Regression
	Simple Nonparametric Regression
	Smooth Functions
	Smoothness Parameter \lambda
	The Solution
	Natural Cubic Splines
	Basis Functions
	Calculating the Solution
	Linear Operator
	Degrees of Freedom
	Bayesian Intepretation
	Bias and Variance Trade-off
	Choosing \lambda
	Smoothers and Spline Models
	Smoothers in R
	Example

	Generalized Additive Models
	Ordinary Least Squares
	Additive Models
	Backfitting
	GAM Definition
	Overview of Fitting GAMs
	GAMs in R
	Example

	Bootstrap for Statistical Models
	Homoskedastic Models
	Residuals
	Studentized Residuals
	Confidence Intervals
	Hypothesis Testing
	Parametric Bootstrap

