

I Introduction statistics course

2 Background on the data sets

3 R l R studio

4 Reproducible data analysis

History of Statistics

300 400 yrs old

Early stats was concerned w data for

governments
1750 statisfrs coined

mean veteran graphic data diff btw

duh and model error

boos States hrs starting using probability

Peirce randomization d random sampling

a 1900 s full integration of probe stats

via study design and inference

Ronald A Fisher

Axtman system for probability
mathematical statistics mid Hoos

late 1900 s l 1980s personal computing

computational statistics

Today data collection is fast cheap

and plentiful
modern stutistri Mld AI DataScience

Definition of Statistes

Statistics the study of how to extract info from
death uhhh includes how to

collect
organize
analyze
present data

Applied stats the poetical considerations and

implementations needed to carry
out

a statisticalanalysis study

Machine learning Inter hee of statistics
and computer science

Data Science Broadening of stations
ML and AI to capture

the data driven rese h

research and discovery era

genetics genomics
Statistics

data science

History of Dak Science

John Tukey 1962 paper the Future of

Data Analysis

Jeff Wu Talk in 1997 called
Statetics Data Science

William Cleveland paper in zoo 1 extends

sits into dark science

Central Dogma of statistics

q q
qpr

9
scientific question

study designs
census

randomized study
observational

sample survey
case I control

Datasets
Available in R

General interest

Genomes duh sets

Central Dogma of Molecular Biology

DNA
off

RAT080
DNA sequence of A TG

C

RNAs complementary sequence of
its DNA Ad GC

Calculator

Operations on numbers: + - * / ˆ
> 2+1
[1] 3

> 6+3*4-2^3
[1] 10

> 6+(3*4)-(2^3)
[1] 10

Atomic Classes

There are five atomic classes (or modes) of objects in R:
1. character
2. complex
3. integer
4. logical
5. numeric (real number)

There is a sixth called “raw” that we will not discuss.

Assigning Values to Variables

> x <- "qcb508" # character

> x <- 2+1i # complex

> x <- 4L # integer

> x <- TRUE # logical

> x <- 3.14159 # numeric

Note: Anything typed after the # sign is not evaluated. The # sign allows you
to add comments to your code.

More Ways to Assign Values

> x <- 1
> 1 -> x
> x = 1

Evaluation

When a complete expression is entered at the prompt, it is evaluated and the
result of the evaluated expression is returned. The result may be auto-printed.
> x <- 1
> x+2
[1] 3
> print(x)
[1] 1
> print(x+2)
[1] 3

Functions

There are many useful functions included in R. “Packages” (covered later) can
be loaded as libraries to provide additional functions. You can also write your
own functions in any R session.
Here are some examples of built-in functions:
> x <- 2
> print(x)
[1] 2
> sqrt(x)
[1] 1.414214
> log(x)
[1] 0.6931472
> class(x)
[1] "numeric"
> is.vector(x)
[1] TRUE

Accessing Help in R

You can open the help file for any function by typing ? with the functions
name. Here is an example:
> ?sqrt

There’s also a function help.search that can do general searches for help. You
can learn about it by typing:
> ?help.search

It’s also useful to use Google: for example, “r help square root”. The R help
files are also on the web.

Variable Names

In the previous examples, we used x as our variable name. Do not use the
following variable names, as they have special meanings in R:
c, q, s, t, C, D, F, I, T
When combining two words for a given variable, we recommend one of these
options:
> my_variable <- 1
> myVariable <- 1

Variable names such as my.variable are problematic because of the special use
of “.” in R.

Vectors

The vector is the most basic object in R. You can create vectors in a number
of ways.
> x <- c(1, 2, 3, 4, 5)
> x
[1] 1 2 3 4 5
>
> y <- 1:20
> y
[1] 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20

>
> z <- seq(from=0, to=100, by=10)
> z
[1] 0 10 20 30 40 50 60 70 80 90 100

> length(z)
[1] 11

• Programmers: vectors are indexed starting at 1, not 0
• A vector can only contain elements of a single class:

> x <- "a"
> x[0]
character(0)
> x[1]
[1] "a"
>
> y <- 1:3
> z <- c(x, y, TRUE, FALSE)
> z
[1] "a" "1" "2" "3" "TRUE" "FALSE"

Matrices

Like vectors, matrices are objects that can contain elements of only one class.
> m <- matrix(1:6, nrow=2, ncol=3)
> m

[,1] [,2] [,3]
[1,] 1 3 5
[2,] 2 4 6
>
> m <- matrix(1:6, nrow=2, ncol=3, byrow=TRUE)
> m

[,1] [,2] [,3]
[1,] 1 2 3

[2,] 4 5 6

Factors

In statistics, factors encode categorical data.
> paint <- factor(c("red", "white", "blue", "blue", "red",
+ "red"))
> paint
[1] red white blue blue red red
Levels: blue red white
>
> table(paint)
paint
blue red white

2 3 1
> unclass(paint)
[1] 2 3 1 1 2 2
attr(,"levels")
[1] "blue" "red" "white"

Lists

Lists allow you to hold di�erent classes of objects in one variable.
> x <- list(1:3, "a", c(TRUE, FALSE))
> x
[[1]]
[1] 1 2 3

[[2]]
[1] "a"

[[3]]
[1] TRUE FALSE
>
> ## access any element of the list
> x[[2]]
[1] "a"
> x[[3]][2]
[1] FALSE

Lists with Names

The elements of a list can be given names.
> x <- list(counting=1:3, char="a", logic=c(TRUE, FALSE))
> x
$counting
[1] 1 2 3

$char
[1] "a"

$logic
[1] TRUE FALSE
>
> ## access any element of the list
> x$char
[1] "a"
> x$logic[2]
[1] FALSE

Missing Values

In data analysis and model fitting, we often have missing values. NA represents
missing values and NaN means “not a number”, which is a special type of missing
value.
> m <- matrix(nrow=3, ncol=3)
> m

[,1] [,2] [,3]
[1,] NA NA NA
[2,] NA NA NA
[3,] NA NA NA
> 0/1
[1] 0
> 1/0
[1] Inf
> 0/0
[1] NaN

NULL

NULL is a special type of reserved value in R.
> x <- vector(mode="list", length=3)
> x

[[1]]
NULL

[[2]]
NULL

[[3]]
NULL

Coercion

We saw earlier that when we mixed classes in a vector they were all coerced to
be of type character:
> c("a", 1:3, TRUE, FALSE)
[1] "a" "1" "2" "3" "TRUE" "FALSE"

You can directly apply coercion with functions as.numeric(), as.character(),
as.logical(), etc.
This doesn’t always work out well:
> x <- 1:3
> as.character(x)
[1] "1" "2" "3"
>
> y <- c("a", "b", "c")
> as.numeric(y)
Warning: NAs introduced by coercion
[1] NA NA NA

Data Frames

The data frame is one of the most important objects in R. Data sets very often
come in tabular form of mixed classes, and data frames are constructed exactly
for this.
Data frames are lists where each element has the same length.
> df <- data.frame(counting=1:3, char=c("a", "b", "c"),
+ logic=c(TRUE, FALSE, TRUE))
> df

counting char logic
1 1 a TRUE
2 2 b FALSE
3 3 c TRUE
>
> nrow(df)
[1] 3
> ncol(df)
[1] 3

> dim(df)
[1] 3 3
>
> names(df)
[1] "counting" "char" "logic"
>
> attributes(df)
$names
[1] "counting" "char" "logic"

$class
[1] "data.frame"

$row.names
[1] 1 2 3

Attributes

Attributes give information (or meta-data) about R objects. The previous slide
shows attributes(df), the attributes of the data frame df.
> x <- 1:3
> attributes(x) # no attributes for a standard vector

NULL
>
> m <- matrix(1:6, nrow=2, ncol=3)

> attributes(m)
$dim
[1] 2 3

> paint <- factor(c("red", "white", "blue", "blue", "red",
+ "red"))
> attributes(paint)
$levels
[1] "blue" "red" "white"

$class
[1] "factor"

Names

Names can be assigned to columns and rows of vectors, matrices, and data
frames. This makes your code easier to write and read.
> names(x) <- c("Princeton", "Rutgers", "Penn")
> x
Princeton Rutgers Penn

1 2 3
>
> colnames(m) <- c("NJ", "NY", "PA")
> rownames(m) <- c("East", "West")
> m

NJ NY PA
East 1 3 5
West 2 4 6
> colnames(m)
[1] "NJ" "NY" "PA"

Accessing Names

Displaying or assigning names to these three types of objects does not have
consistent syntax.

Object Column Names Row Names
vector names() N/A
data frame names() row.names()
data frame colnames() rownames()
matrix colnames() rownames()

R + Markdown + knitr

R Markdown was developed by the RStudio team to allow one to write repro-
ducible research documents using Markdown and knitr. This is contained in
the rmarkdown package, but can easily be carried out in RStudio.
Markdown was originally developed as a very simply text-to-html conversion
tool. With Pandoc, Markdown is a very simply text-to-X conversion tool where
X can be many di�erent formats: html, LaTeX, PDF, Word, etc.

R Markdown Files

R Markdown documents begin with a metadata section, the YAML header,
that can include information on the title, author, and date as well as options
for customizing output.
title: "QCB 508 -- Homework 1"
author: "Your Name"
date: February 23, 2017
output: pdf_document
Many options are available. See http://rmarkdown.rstudio.com for full docu-
mentation.

Markdown

Headers:
Header 1
Header 2
Header 3
Emphasis:
italic **bold**
italic __bold__
Tables:
First Header	Second Header
Content Cell | Content Cell
Content Cell | Content Cell
Unordered list:
- Item 1
- Item 2

- Item 2a
- Item 2b

Ordered list:
1. Item 1
2. Item 2
3. Item 3

- Item 3a
- Item 3b

Links:
http://example.com

[linked phrase](http://example.com)
Blockquotes:
Florence Nightingale once said:

> For the sick it is important
> to have the best.
Plain code blocks:
���
This text is displayed verbatim with no formatting.
���
Inline Code:

We use the �print()� function to print the contents
of a variable in R.
Additional documentation and examples can be found at http://rmarkdown.
rstudio.com/authoring_basics.html and http://daringfireball.net/projects/
markdown/basics.

LaTeX

LaTeX is a markup language for technical writing, especially for mathematics.
It can be include in R Markdown files.
For example,
$y = a + bx + \epsilon$
produces
y = a + bx + ‘

For more help with LaTeX. . .
https://www.artofproblemsolving.com/wiki/index.php/LaTeX
is an introduction to LaTeX and
http://www.stat.cmu.edu/~cshalizi/rmarkdown/#math-in-r-markdown
is a primer on LaTeX for R Markdown.

knitr

The knitr R package allows one to execute R code within a document, and to
display the code itself and its output (if desired). This is particularly easy to
do in the R Markdown setting. For example. . .
Placing the following text in an R Markdown file
The sum of 2 and 2 is �r 2+2�.
produces in the output file
The sum of 2 and 2 is 4.

knitr Chunks

Chunks of R code separated from the text. In R Markdown:
���{r}
x <- 2
x + 1
print(x)
���
Output in file:
> x <- 2
> x + 1
[1] 3
> print(x)
[1] 2

Chunk Option: echo

In R Markdown:
���{r, echo=FALSE}
x <- 2
x + 1
print(x)
���
Output in file:
[1] 3
[1] 2

Chunk Option: results

In R Markdown:

���{r, results="hide"}
x <- 2
x + 1
print(x)
���
Output in file:
> x <- 2
> x + 1
> print(x)

Chunk Option: include

In R Markdown:
���{r, include=FALSE}
x <- 2
x + 1
print(x)
���
Output in file:
(nothing)

Chunk Option: eval

In R Markdown:
���{r, eval=FALSE}
x <- 2
x + 1
print(x)
���
Output in file:
> x <- 2
> x + 1
> print(x)

Chunk Names

Naming your chunks can be useful for identifying them in your file and during
the execution, and also to denote dependencies among chunks.
���{r my_first_chunk}

x <- 2
x + 1
print(x)
���

knitr Option: cache

Sometimes you don’t want to run chunks over and over, especially for large
calculations. You can “cache” them.
���{r chunk1, cache=TRUE, include=FALSE}
x <- 2
���
���{r chunk2, cache=TRUE, dependson="chunk1"}
y <- 3
z <- x + y
���
This creates a directory called cache in your working directory that stores the
objects created or modified in these chunks. When chunk1 is modified, it is
re-run. Since chunk2 depends on chunk1, it will also be re-run.

knitr Options: figures

You can add chunk options regarding the placement and size of figures. Exam-
ples include:

• fig.width
• fig.height
• fig.align

Changing Default Chunk Settings

If you will be using the same options on most chunks, you can set default
options for the entire document. Run something like this at the beginning of
your document with your desired chunk options.
���{r my_opts, cache=FALSE, echo=FALSE}
library("knitr")
opts_chunk$set(fig.align="center", fig.height=4, fig.width=6)
���

Documentation and Examples

• http://yihui.name/knitr/

• http://kbroman.org/knitr_knutshell/pages/Rmarkdown.html
• https://github.com/jdstorey/asdslectures

Common Control Structures

• if and else: testing a condition and acting on it
• for: execute a loop a fixed number of times
• while: execute a loop while a condition is true
• repeat: execute an infinite loop (must break out of it to stop)
• break: break the execution of a loop
• next: skip an interation of a loop

From R Programming for Data Science, by Roger Peng

Some Boolean Logic

R has built-in functions that produce TRUE or FALSE such as is.vector or
is.na. You can also do the following:

• x == y : does x equal y?
• x > y : is x greater than y? (also < less than)
• x >= y : is x greater than or equal to y?
• x && y : are both x and y true?
• x || y : is either x or y true?
• !is.vector(x) : this is TRUE if x is not a vector

if

Idea:
if(<condition>) {

do something
}
Continue with rest of code
Example:
> x <- c(1,2,3)
> if(is.numeric(x)) {
+ x+2
+ }
[1] 3 4 5

if-else

Idea:
if(<condition>) {

do something
}

else {
do something else

}
Example:
> x <- c("a", "b", "c")
> if(is.numeric(x)) {
+ print(x+2)
+ } else {
+ class(x)
+ }
[1] "character"

for Loops

Example:
> for(i in 1:10) {
+ print(i)
+ }
[1] 1
[1] 2
[1] 3
[1] 4
[1] 5
[1] 6
[1] 7
[1] 8
[1] 9
[1] 10

Examples:
> x <- c("a", "b", "c", "d")
>
> for(i in 1:4) {
+ print(x[i])
+ }
[1] "a"
[1] "b"
[1] "c"
[1] "d"
>
> for(i in seq_along(x)) {
+ print(x[i])
+ }

[1] "a"
[1] "b"
[1] "c"
[1] "d"

Nested for Loops

Example:
> m <- matrix(1:6, nrow=2, ncol=3, byrow=TRUE)
>
> for(i in seq_len(nrow(m))) {
+ for(j in seq_len(ncol(m))) {
+ print(m[i,j])
+ }
+ }
[1] 1
[1] 2
[1] 3
[1] 4
[1] 5
[1] 6

while

Example:
> x <- 1:10
> idx <- 1
>
> while(x[idx] < 4) {
+ print(x[idx])
+ idx <- idx + 1
+ }
[1] 1
[1] 2
[1] 3
>
> idx
[1] 4

Repeats the loop until while the condition is TRUE.

repeat

Example:
> x <- 1:10
> idx <- 1
>
> repeat {
+ print(x[idx])
+ idx <- idx + 1
+ if(idx >= 4) {
+ break
+ }
+ }
[1] 1
[1] 2
[1] 3
>
> idx
[1] 4

Repeats the loop until break is executed.

break and next

break ends the loop. next skips the rest of the current loop iteration.
Example:
> x <- 1:1000
> for(idx in 1:1000) {
+ # %% calculates division remainder

+ if((x[idx] %% 2) > 0) {
+ next
+ } else if(x[idx] > 10) { # an else-if!!

+ break
+ } else {
+ print(x[idx])
+ }
+ }
[1] 2
[1] 4
[1] 6
[1] 8
[1] 10

Vectorized Operations

Calculations on Vectors

R is usually smart about doing calculations with vectors. Examples:
>
> x <- 1:3
> y <- 4:6
>
> 2*x # same as c(2*x[1], 2*x[2], 2*x[3])

[1] 2 4 6
> x + 1 # same as c(x[1]+1, x[2]+1, x[3]+1)

[1] 2 3 4
> x + y # same as c(x[1]+y[1], x[2]+y[2], x[3]+y[3])

[1] 5 7 9
> x*y # same as c(x[1]*y[1], x[2]*y[2], x[3]*y[3])

[1] 4 10 18

A Caveat

If two vectors are of di�erent lengths, R tries to find a solution for you (and
doesn’t always tell you).
> x <- 1:5
> y <- 1:2
> x+y
Warning in x + y: longer object length is not a multiple of shorter object
length
[1] 2 4 4 6 6

Vectorized Matrix Operations

Operations on matrices are also vectorized. Example:
> x <- matrix(1:4, nrow=2, ncol=2, byrow=TRUE)
> y <- matrix(1:4, nrow=2, ncol=2)
>
> x+y

[,1] [,2]
[1,] 2 5
[2,] 5 8
>
> x*y

[,1] [,2]

[1,] 1 6
[2,] 6 16

Mixing Vectors and Matrices

What happens when we do calculations involving a vector and a matrix? Ex-
ample:
> x <- matrix(1:6, nrow=2, ncol=3, byrow=TRUE)
> z <- 1:2
>
> x + z

[,1] [,2] [,3]
[1,] 2 3 4
[2,] 6 7 8
>
> x * z

[,1] [,2] [,3]
[1,] 1 2 3
[2,] 8 10 12

Mixing Vectors and Matrices

Another example:
> x <- matrix(1:6, nrow=2, ncol=3, byrow=TRUE)
> z <- 1:3
>
> x + z

[,1] [,2] [,3]
[1,] 2 5 5
[2,] 6 6 9
>
> x * z

[,1] [,2] [,3]
[1,] 1 6 6
[2,] 8 5 18

What happened this time?

Vectorized Boolean Logic

We saw && and || applied to pairs of logical values. We can also vectorize these
operations.

> a <- c(TRUE, TRUE, FALSE)
> b <- c(FALSE, TRUE, FALSE)
>
> a | b
[1] TRUE TRUE FALSE
> a & b
[1] FALSE TRUE FALSE

Subsetting Vectors

> x <- 1:8
>
> x[1] # extract the first element

[1] 1
> x[2] # extract the second element

[1] 2
>
> x[1:4] # extract the first 4 elements

[1] 1 2 3 4
>
> x[c(1, 3, 4)] # extract elements 1, 3, and 4

[1] 1 3 4
> x[-c(1, 3, 4)] # extract all elements EXCEPT 1, 3, and 4

[1] 2 5 6 7 8

Subsetting Vectors

> names(x) <- letters[1:8]
> x
a b c d e f g h
1 2 3 4 5 6 7 8
>
> x[c("a", "b", "f")]
a b f
1 2 6
>
> s <- x > 3
> s

a b c d e f g h
FALSE FALSE FALSE TRUE TRUE TRUE TRUE TRUE
> x[s]
d e f g h
4 5 6 7 8

Subsettng Matrices

> x <- matrix(1:6, nrow=2, ncol=3, byrow=TRUE)
> x

[,1] [,2] [,3]
[1,] 1 2 3
[2,] 4 5 6

>
> x[1,2]
[1] 2
> x[1,]
[1] 1 2 3
> x[,2]
[1] 2 5

Subsettng Matrices

> colnames(x) <- c("A", "B", "C")
>
> x[, c("B", "C")]

B C
[1,] 2 3
[2,] 5 6
>
> x[c(FALSE, TRUE), c("B", "C")]
B C
5 6
>
> x[2, c("B", "C")]
B C
5 6

Subsettng Matrices

> s <- (x %% 2) == 0
> s

A B C
[1,] FALSE TRUE FALSE
[2,] TRUE FALSE TRUE
>
> x[s]
[1] 4 2 6
>
> x[c(2, 3, 6)]
[1] 4 2 6

Subsetting Lists

> x <- list(my=1:3, favorite=c("a", "b", "c"),
+ course=c(FALSE, TRUE, NA))
>
> x[[1]]
[1] 1 2 3
> x[["my"]]
[1] 1 2 3
> x$my
[1] 1 2 3

> x[[c(3,1)]]
[1] FALSE
> x[[3]][1]
[1] FALSE

> x[c(3,1)]
$course
[1] FALSE TRUE NA

$my
[1] 1 2 3

Subsetting Data Frames

> x <- data.frame(my=1:3, favorite=c("a", "b", "c"),
+ course=c(FALSE, TRUE, NA))
>
> x[[1]]
[1] 1 2 3
> x[["my"]]
[1] 1 2 3
> x$my
[1] 1 2 3

> x[[c(3,1)]]
[1] FALSE
> x[[3]][1]
[1] FALSE

> x[c(3,1)]
course my

1 FALSE 1
2 TRUE 2

3 NA 3

Subsetting Data Frames

> x <- data.frame(my=1:3, favorite=c("a", "b", "c"),
+ course=c(FALSE, TRUE, NA))
>
> x[1,]

my favorite course
1 1 a FALSE
> x[,3]
[1] FALSE TRUE NA
> x[,"favorite"]
[1] a b c
Levels: a b c

> x[1:2,]
my favorite course

1 1 a FALSE
2 2 b TRUE
> x[,2:3]

favorite course
1 a FALSE
2 b TRUE
3 c NA

Missing Values

> data("airquality", package="datasets")
> head(airquality)

Ozone Solar.R Wind Temp Month Day
1 41 190 7.4 67 5 1
2 36 118 8.0 72 5 2
3 12 149 12.6 74 5 3
4 18 313 11.5 62 5 4
5 NA NA 14.3 56 5 5
6 28 NA 14.9 66 5 6
> dim(airquality)
[1] 153 6

> which(is.na(airquality$Ozone))
[1] 5 10 25 26 27 32 33 34 35 36 37 39 42 43 45 46 52

[18] 53 54 55 56 57 58 59 60 61 65 72 75 83 84 102 103 107

[35] 115 119 150
> sum(is.na(airquality$Ozone))
[1] 37

Subsetting by Matching

> letters
[1] "a" "b" "c" "d" "e" "f" "g" "h" "i" "j" "k" "l" "m" "n" "o" "p" "q"

[18] "r" "s" "t" "u" "v" "w" "x" "y" "z"
> vowels <- c("a", "e", "i", "o", "u")
>
> letters %in% vowels
[1] TRUE FALSE FALSE FALSE TRUE FALSE FALSE FALSE TRUE FALSE FALSE

[12] FALSE FALSE FALSE TRUE FALSE FALSE FALSE FALSE FALSE TRUE FALSE
[23] FALSE FALSE FALSE FALSE
> which(letters %in% vowels)
[1] 1 5 9 15 21
>
> letters[which(letters %in% vowels)]
[1] "a" "e" "i" "o" "u"

Defining a New Function

• Functions are defined using the function() directive
• They are stored as variables, so they can be passed to other functions and

assigned to new variables
• Arguments and a final return object are defined

Example 1

> my_square <- function(x) {
+ x*x # can also do return(x*x)

+ }
>
> my_square(x=2)
[1] 4
>
> my_fun2 <- my_square
> my_fun2(x=3)
[1] 9

Example 2

> my_square_ext <- function(x) {
+ y <- x*x
+ return(list(x_original=x, x_squared=y))
+ }
>
> my_square_ext(x=2)
$x_original
[1] 2

$x_squared
[1] 4
>
> z <- my_square_ext(x=2)

Example 3

> my_power <- function(x, e, say_hello) {
+ if(say_hello) {
+ cat("Hello World!")

+ }
+ x^e
+ }
>
> my_power(x=2, e=3, say_hello=TRUE)
Hello World!
[1] 8
>
> z <- my_power(x=2, e=3, say_hello=TRUE)
Hello World!
> z
[1] 8

Default Function Argument Values

Some functions have default values for their arguments:
> str(matrix)
function (data = NA, nrow = 1, ncol = 1, byrow = FALSE, dimnames = NULL)

You can define a function with default values by the following:
f <- function(x, y=2) {

x + y
}
If the user types f(x=1) then it defaults to y=2, but if the user types f(x=1,
y=3), then it executes with these assignments.

The Ellipsis Argument

You will encounter functions that include as a possible argument the ellipsis:
...
This basically holds arguments that can be passed to functions called within a
function. Example:
> double_log <- function(x, ...) {
+ log((2*x), ...)
+ }
>
> double_log(x=1, base=2)
[1] 1
> double_log(x=1, base=10)
[1] 0.30103

Argument Matching

R tries to automatically deal with function calls when the arguments are not
defined explicity. For example:
x <- matrix(1:6, nrow=2, ncol=3, byrow=TRUE) # versus
x <- matrix(1:6, 2, 3, TRUE)
I strongly recommend that you define arguments explcitly. For example, I can
never remember which comes first in matrix(), nrow or ncol.

Loading .RData Files

An .RData file is a binary file containing R objects. These can be saved from
your current R session and also loaded into your current session.
> # generally...
> # to load:
> load(file="path/to/file_name.RData")
> # to save:
> save(file="path/to/file_name.RData")
> ## assumes file in working directory
> load(file="project_1_R_basics.RData")

> ## loads from our GitHub repository
> load(file=url("https://github.com/SML201/project1/raw/
+ master/project_1_R_basics.RData"))

Listing Objects

The objects in your current R session can be listed. An environment can also
be specificied in case you have objects stored in di�erent environments.
> ls()
[1] "num_people_in_precept" "SML201_grade_distribution"
[3] "some_ORFE_profs"
>
> ls(name=globalenv())
[1] "num_people_in_precept" "SML201_grade_distribution"
[3] "some_ORFE_profs"
>
> ## see help file for other options
> ?ls

Removing Objects

You can remove specific objects or all objects from your R environment of
choice.
> rm("some_ORFE_profs") # removes variable some_ORFE_profs

>
> rm(list=ls()) # Removes all variables from environment

Packages

“In R, the fundamental unit of shareable code is the package. A package
bundles together code, data, documentation, and tests, and is easy to share
with others. As of January 2015, there were over 6,000 packages available on
the Comprehensive R Archive Network, or CRAN, the public clearing house
for R packages. This huge variety of packages is one of the reasons that R is
so successful: the chances are that someone has already solved a problem that
you’re working on, and you can benefit from their work by downloading their
package.”
From http://r-pkgs.had.co.nz/intro.html by Hadley Wickham

Contents of a Package

• R functions
• R data objects
• Help documents for using the package
• Information on the authors, dependencies, etc.
• Information to make sure it “plays well” with R and other packages

Installing Packages

From CRAN:

install.packages("dplyr")

From GitHub (for advanced users):

library("devtools")
install_github("hadley/dplyr")

From Bioconductor (basically CRAN for biology):

library("BiocManager")
BiocManager::install("qvalue")

Multiple packages:
install.packages(c("dplyr", "ggplot2"))
Install all dependencies:
install.packages(c("dplyr", "ggplot2"), dependencies=TRUE)

Updating packages:
update.packages()

Loading Packages

Two ways to load a package:
library("dplyr")
library(dplyr)
I prefer the former.

Getting Started with a Package

When you install a new package and load it, what’s next? I like to look at the
help files and see what functions and data sets a package has.
library("dplyr")
help(package="dplyr")

Specifying a Function within a Package

You can call a function from a specific package. Suppose you are in a setting
where you have two packages loaded that have functions with the same name.
dplyr::arrange(mtcars, cyl, disp)
This calls the arrange functin specifically from dplyr. The package plyr also
has an arrange function.

